Sequential Procurement Auctions and Their Effect on Investment Decisions

Gonzalo Cisternas
MIT Sloan

Nicolas Figueroa
PUC-Chile
Procurement Auctions

- Markets designed for the purchase of goods (typically of high cost)
- Used both in public and private sector
- Finding ways to reduce total expenditures is a question of first-order relevance:
 - OECD countries’ public procurement expenditures in 2011 accounted for 19% of their GDP
 - Chile: Transactions performed through Chilecompra 10.000 million USD in 2013 (≈ 4% GDP)
 - Also a relevant question in the private sector
Main Features

- These mechanisms are used repeatedly over time
- Tasks sometimes involve a high degree of expertise (know-how) ⇒ Group of sellers does not change too much
- Sellers can invest in improving their technologies. Specialized tasks ⇒ Relationship-specific investments
Two ways through which total expenditures can be reduced are:

1. Inter-temporal incentives: design of **dynamic mechanisms** that smooth out costs across time
2. Incentivizing sellers to **invest in cost-reducing technologies**

We derive the **optimal contract** (i.e. optimal auction + optimal level of investment) chosen by a buyer in an environment where:

- She must purchase two goods sequentially over time and can fully commit to a two-period mechanism
- The winner of the first auction can invest in a cost-reducing technology for the second auction
Main Results

- The optimal mechanism gives an advantage to the first-period winner in the second auction.
 - Advantage decreases with the number of sellers, but it never disappears.
- In this dynamic setting, commitment induces over-investment.
- Investment observability is irrelevant for cost minimization and surplus maximization.
- More generally, in dynamic environments awarding advantages:
 - Can induce more competition among sellers \Rightarrow reduce current costs.
 - Can incentivize sellers to invest more in cost-reducing technologies \Rightarrow reduce future costs.

Contents

- Model
- Efficiency
- Cost Minimization
- Conclusions
- Lack of Commitment
Basics

- A buyer (she) must purchase two goods sequentially over time.
- There are n risk-neutral sellers that are ex-ante identical.
- A Seller’s cost to produce each good is his private information.
- Costs are independent across sellers, and also independent across time.
- We are interested in mechanism design, i.e., the buyer can commit to a two-period mechanism at time zero.
 - Since costs are i.i.d. across time, the revelation principle also holds when the buyer lacks commitment.
In the first period a seller’s cost is drawn from a c.d.f. $F(\cdot)$, with density $f(\cdot)$ and support $C = [c, \bar{c}]$.

First-period losers maintain $F(\cdot)$ for the second period.

The first-period winner instead can invest in a cost-reducing technology between auctions:

- Investing $I \geq 0 \Rightarrow$ Cost distribution becomes $G(\cdot, I)$, with density $g(\cdot, I)$ and support C'.
- Investing is costly: $\Psi : \mathbb{R}_+ \to \mathbb{R}_+$ differentiable, strictly increasing and strictly convex, with $\Psi(0) = \Psi'(0) = 0$.
Regularity Assumptions Over $F(\cdot)$ and $G(\cdot, \cdot)$

Assumption:

(i) $c + F(c)/f(c)$ is strictly increasing in c.

(ii) $F(c) \leq G(c, 0)$ for all $c \in C$.

(iii) For each $c \in C$, $I \mapsto G(c, I)$ is twice continuously differentiable, strictly increasing (FOSD) and concave. Furthermore, $\frac{\partial G}{\partial I}(c, 0) > 0$ for all $c \in C$.

Obs: The following are sufficient for (ii) and (iii):

(a) MLRP: For all $c' < c \in C$ and $0 \leq I' < I \in \mathbb{R}$,

$$\frac{f(c')}{f(c)} \leq \frac{g(c', I')}{g(c, I')} < \frac{g(c', I)}{g(c, I)}.$$

(b) Hazard-rate ordering: For all $c \in C$ and $0 \leq I' < I$

$$\frac{g(c, I)}{G(c, I)} \leq \frac{g(c, I')}{G(c, I')} \leq \frac{f(c)}{F(c)}.$$
Timeline

- \(t=0 \): The rules of both procurement auctions are set

- \(t=1 \): First procurement auction takes place

- \(t=2 \): (1) Investment takes place. (2) Second procurement auction takes place
Direct Mechanisms

Definition

A direct mechanism that implements \(I \geq 0, \Gamma(I) \), corresponds to a tuple \(\Gamma(I) = (t^1(\cdot), q^1(\cdot), t^2_w(\cdot; I), q^2_w(\cdot; I), t^2_ℓ(\cdot; I), q^2_ℓ(\cdot; I)) \) where

\[
\begin{align*}
t^1 & : C^n \rightarrow \mathbb{R}^n \quad \text{(transfer at } t=1) \\
q^1 & : C^n \rightarrow \Delta_n \quad \text{(allocation rule at } t=1) \\
t^2_w(\cdot; I) & : C^n \rightarrow \mathbb{R} \\
q^2_w(\cdot; I) & : C^n \rightarrow [0, 1] \\
t^2_ℓ(\cdot; I) & : C^n \rightarrow \mathbb{R}^{n-1} \\
q^2_ℓ(\cdot; I) & : C^n \rightarrow [0, 1]^{n-1}
\end{align*}
\]

such that \(q^2_w(c; I) + \sum_{i \neq w} q^2_ℓ,i(c; I) = 1 \) for all \(c \in C^n \), and such that the first-period winner finds it optimal to invest \(I \geq 0 \) between auctions.
Contents

• Model

• Efficiency

• Cost Minimization

• Conclusions

• Lack of Commitment
Ex-Post Allocative Efficiency

- Planner observes \(I \) and realized costs, and maximizes **total surplus**
- Efficient mechanism \(\Gamma^e \)

\[
q_{i,t}^{t,e}(c) = \begin{cases}
1 & c_i < c_j \forall j \neq i \\
0 & \sim
\end{cases}
\]

(1)

- Social cost:

\[
C(\Gamma^e, I) = n \int_C c[1 - F(c)]^{n-1} f(c)dc \\
+ \int_C c[1 - F(c)]^{n-1} g(c, I)dc \\
+ (n - 1) \int_C c[1 - F(c)]^{n-2}[1 - G(c, I)]f(c)dc \\
+ \Psi(I)
\]

(2)
Socially Efficient Investment

The planner solves \(\min_{I \geq 0} C(\Gamma^e, I) \)

Proposition

The socially efficient level of investment, \(I^e \), is the solution to

\[
\max_{I \geq 0} \int_C [1 - F(c)]^{n-1} G(c, I) dc - \Psi(I) \tag{3}
\]

Furthermore, it can be induced using two SPA regardless of the observability of the investment decision.

- Observe that \((3) \Leftrightarrow \max_{I \geq 0} \int_C [1 - F(c)]^{n-1} \frac{G(c, I)}{g(c, I)} g(c, I) dc - \Psi(I) \)
- Hidden investment: \(I^e \in \arg \max_{I \geq 0} \int_C \Pi^2_e(c, c) g(c, I) dc - \Psi(I) \) and

\[
\Pi^2_e(c, c) = \Pi^2_e(\bar{c}, \bar{c}) + \int_c^\bar{c} Q^2_e(s) ds
\]
Contents

- Model
- Efficiency
- Cost Minimization
- Conclusions
- Lack of Commitment
Cost Minimization Under Full Commitment

- Buyer must purchase two goods sequentially at the lowest possible cost.
- She can commit to the rules of both auctions before these take place.
- Suppose that investment is observable.
Notation

\[T^1_i(c'_i) = \int_{C_{-i}} t^1_i(c'_i, c_{-i}) f^{n-1}_{c_{-i}} dc_{-i} \]

\[Q^1_i(c'_i) = \int_{C_{-i}} q^1_i(c'_i, c_{-i}) f^{n-1}_{c_{-i}} dc_{-i} \]

\[\Pi^1_i(c_i, c'_i, I; I) = T^1_i(c'_i) - c_i Q^1_i(c'_i) + Q^1_i(c'_i) \int_C \Pi^2_w(c, c; I) g(c, I) dc \]

\[+ [1 - Q^1_i(c'_i)] \int_C \Pi^2_{\ell,i}(c, c; I) f(c) dc \]

\[\Pi^2_w(c, c'; I) = T^2_w(c'; I) - c Q^2_w(c'; I) \] (4)
The Buyer’s Problem

The buyer minimizes

\[
C = \sum_{i=1}^{n} \int_{C} T_{i}^{1}(c) f(c) dc \\
+ \int_{C} T_{w}^{2}(c; I) g(c, I) dc + \sum_{j \neq w} \int_{C} T_{\ell,j}^{2}(c; I) f(c) dc
\]

subject to

- Incentive-compatibility constraints
- Individual rationality (i.e. voluntary participation)
Incentive Compatibility (I is observable)

\[IC_o : \begin{cases}
\Pi^2_w(c_w, c'_w; I) \geq \Pi^2_w(c_w, c'_w; I), \forall c_w, c'_w \in C. \\
\Pi^2_{\ell,i}(c_i, c_i; I) \geq \Pi^2_{\ell,i}(c_i, c'_i; I), \forall c_i, c'_i \in C, \forall i \neq w. \\
\Pi^1_i(c_i, c_i, I; I) \geq \Pi^1_i(c_i, c'_i, I; I), \forall c_i, c'_i \in C, \forall i \in N.
\end{cases} \]

Lemma

A mechanism $\Gamma(I)$ is IC if and only if

(i) $Q^1_i(\cdot)$ is non increasing and, for all $c_i \in C$,

\[\Pi^1_{i,I}(c_i, c_i) = \Pi^1_{i,I}(\bar{c}, \bar{c}) + \int_{c_i}^{\bar{c}} Q^1_i(s; I) ds \]

(ii) $Q^2_k(\cdot; I)$ is non increasing, $k = w, (\ell, i), i \neq w, i \in N$,

\[\Pi^2_k(c_k, c_k; I) = \Pi^2_k(\bar{c}, \bar{c}; I) + \int_{c_k}^{\bar{c}} Q^2_k(s; I) ds. \]
Participation Constraints

- Participation in the second period is ensured by assuming that

\[PC^2(I) : \left\{ \begin{array}{l}
\Pi_w^2(c_w, c_w; I) - \Psi(I) \geq 0, \quad \forall c_w \in C \\
\Pi_{\ell, i}^2(c_i, c_i; I) \geq 0, \quad \forall c_i \in C, \ i \neq w.
\end{array} \right. \]

- We follow Pesendorfer and Jofre-Bonet (2014):

\[PC^1(I) : \Pi_i^1(c_i, c_i, I; I) \geq \int_C \Pi_{\ell, i}^2(c, c; I) f(c) dc, \quad \forall c_i \in C, \ \forall i \in N, \]

Intuition:

- Buyer wants to induce the participation of all sellers in both auctions
- But she cannot prevent the participation at \(t = 2 \) of a seller that skipped the first auction
Optimal Mechanism

Proposition

Suppose that the buyer wants to implement a level $I \geq 0$. The cost-minimizing mechanism, $\Gamma^*(I)$, is given by

ermend\=1\ldots n \quad q_1^*(c_1, \ldots, c_n) = \mathbb{1}\{c_i < c_j, \forall j \neq i\},
ermend\=1\quad w \quad q_2^*(c_w, c_{-w}) = \mathbb{1}\{c_w < c_i + (1 + \frac{1}{n-1}) \frac{F(c_i)}{f(c_i)}, \forall i \neq w\},
ermend\=1\ldots n \quad t_1^*(c_1, \ldots, c_n) = \mathbb{1}\{c_i < k(c_i), \forall i \neq w\} \min \{k(c_i); i \neq w\},
ermend\=1\quad i \quad t_i^1(c_i, c_{-i}; I) = \mathbb{1}\{c_i < c_j, \forall j \neq i\} \left[\min \{c_j; j \neq i\} - (\Pi^2_w(I) - \Psi(I) - \Pi^2_\ell(I))\right] - \Pi^2_\ell(I)
ermend\=1\ldots n \quad t_i^2(c_1, \ldots, c_n) = \mathbb{1}\{c_i < (1 + \frac{1}{n-1}) \frac{F(c_i)}{f(c_i)}, \forall i \neq w\},

where $k(c) := c + \left(1 + \frac{1}{n-1}\right) \frac{F(c)}{f(c)}$ and

$$
\Pi^2_w(I) := \int_C \Pi^2_w(c, c; I) g(c, I) dc \quad \text{and} \quad \Pi^2_\ell(I) := \int_C \Pi^2_\ell(c, c; I) f(c) dc.
$$
Intuition and Remarks

- First auction is efficient; the second is inefficient (advantage gap)
- $\Gamma^*(I)$ is optimal even when $\Psi \equiv 0$. Intuition for the bias then?
 - Incentive to reduce $\Pi^2_\ell(I)$ so as to relax $\Pi^1_i(c_i, c_i, I; I) \geq \Pi^2_\ell(I)$
 - $t^1_i(c_i, c_{-i}; I) = \mathbb{1}_{\{c_i < c_j, \forall j \neq i\}} \left[\min\{c_j; j \neq i\} - (\Pi^2_w(I) - \Pi^2_\ell(I) - \Psi(I)) \right] - \Pi^2_\ell(I)$
 - Transfer to the winner at $t = 1$ is reduced by $\Pi^2_w(I) - \Pi^2_\ell(I) \to \text{Buyer}$ extracts this extra rent, i.e., increased competition at $t = 1$

- Advantage gap $k(c) = c + \left(1 + \frac{1}{n-1}\right) \frac{F(c)}{f(c)}$:
 - Is independent of $G(\cdot, I)$
 - Never disappears: $k(c) \to c + \frac{F(c)}{f(c)}$ as $n \to \infty$: Isolates the cost-smoothing property of dynamic auctions (In fact, $I^*(n) \to 0$ as $n \to \infty$)
Optimal Investment

Proposition

When investment is observable, the buyer chooses an investment level $I^* > 0$ that solves

$$\max_{I \geq 0} \int_{C} [1 - F(k^{-1}(c))]^{n-1} \frac{G(c, I)}{g(c, I)} g(c, I) dc - \Psi(I),$$

(6)

where $k(c) = c + \left(1 + \frac{1}{n-1}\right) \frac{F(c)}{f(c)}$, $c \in C$. Moreover, $I^* > I^e$, so **over-investment** occurs.

Intuition: The winner gets the second project more often that under the efficient mechanism, i.e. $1 - F(k^{-1}(c)) > 1 - F(c)$, which is costly.

Hence, it is optimal to make him win with an even lower average cost.
Hidden Investment: Constraints

- Incentive compatibility:

\[I \in \arg \max_{K \geq 0} \int C \Pi_2(w, c; I) g(c, K) dc - \Psi(K) \]

\[\Pi^2_w(c_w, c'_w; I) \geq \Pi^2_w(c'_w, c'_w; I), \ \forall c_w, c'_w \in C \]

\[\Pi^2_{\ell,i}(c_i, c'_i; I) \geq \Pi^2_{\ell,i}(c'_i, c'_i; I), \ \forall c_i, c'_i \in C, \ \forall i \neq w \]

\[\Pi^1_i(c_i, c'_i, I; I) \geq \Pi^1_i(c'_i, c'_i, I; I), \ \forall c_i, c'_i \in C, \ \forall i \in N. \]

- Participation constraints: As before
Optimal Contract

Proposition

Γ∗(I∗) induces the winner to invest I∗. Hence, it is optimal when investment is hidden, and I∗ can be implemented at no additional cost. Over-investment occurs.

Proof:

\[
\max_{I \geq 0} \int_{C} \Pi^2_w(c, c; I^*) g(c, I) dc - \Psi(I) = \max_{I \geq 0} \int_{C} Q^2_w(c) g(c, I) dc - \Psi(I)
\]

\[
= \int_{C} [1 - F(k^{-1}(c))]^{n-1} G(c, I) dc - \Psi(I).
\]

Intuition: Incentives on the margin are stepper
Remarks: Full-Commitment Case

- Cost minimization: Investment incentives are aligned under the optimal mechanism.
- Surplus maximization: Investment incentives are aligned under the efficient mechanism.
- Is it the same under any arbitrary mechanism (i.e., a consequence of risk neutrality)? No:

Proposition

Let $n = 2$ and consider the IC mechanism $q_{w,I}^2(c_w, c_l) = 1_{c_w < g(c_l)}$, with $g'(\cdot) \geq 0$, $g(c) = c$ and $g(c) \leq c + 2 \frac{F(c)}{f(c)}$, $\forall c \in C$, with strict inequality on a subset of C with non-zero measure. Then, the buyer chooses an investment level that is larger than the one chosen by the first-period winner.
Contents

- Model
- Efficiency
- Cost Minimization
- Conclusions
- Lack of Commitment
Conclusions

- In dynamic contexts, mechanisms serve a dual role:
 - Inter-temporal cost smoothing
 - Induce incentives to invest
- Commitment generates **over-investment** via awarding **advantages** to previous winners
- When the buyer has full commitment not observing investment is irrelevant under optimal contracts (e.g.: cost minimization or surplus maximization). This is not the case when the buyer lacks commitment (**hold-up** effect)
- World is more complicated: although providing an advantage increases investment, it can creates barriers to entry
- **Challenging question:** fully dynamic environment with experience accumulation and history-dependent advantages
Thank you!
Contents

- Model
- Efficiency
- Cost Minimization
- Conclusions
- Lack of Commitment
Lack of Commitment

In this case the buyer can change the rules of the second auction after the first one has taken place.

We solve the problem using sequential rationality:

- Observable investment: Stackelberg game in which the buyer treats investment as sunk
- Hidden investment: Simultaneous-move game in which the buyer takes into account the winner’s incentives to invest

Assume $c \mapsto c + \frac{G(c, I)}{g(c, I)}$ is increasing
Observable Investment

- After investment becomes sunk → standard one-shot auction problem (Myerson, 1981) at $t = 2$. Call this mechanism $\hat{\Gamma}^2(I)$.

Proposition

Suppose that winner invests $I \geq 0$. Then, $\hat{\Gamma}^2(I)$ satisfies

$$\hat{q}_w^2(c_w, c_{-w}; I) = \begin{cases}
1 & c_w + \frac{G(c_w, I)}{g(c_w, I)} < \min_{i \neq w} \left\{ c_i + \frac{F(c_i)}{f(c_i)} \right\} \\
0 & \sim
\end{cases}$$

The investment induced in this setting, \hat{I}, satisfies

$$\max_{I \geq 0} V(I) = \int_C \left[1 - F(v^{-1}(h(c, I))) \right]^{n-1} G(c, I) dc - \Psi(I)$$

with $h(c, I) = c + \frac{G(c, I)}{g(c, I)}$ and $J(c) = c + \frac{F(c)}{f(c)}$. Hence, $\hat{\Gamma}^2(\hat{I})$ arises in equilibrium, and the winner suffers a disadvantage.
Hidden Investment: Simultaneous-Move Game

- Winner’s action space: \(I \in [0, +\infty) \).
- Buyer’s action space: \(BR_b = \{ \hat{\Gamma}^2(I) \mid I \geq 0 \} \) (rationalizability argument)
- Focus on pure-strategy equilibria

Proposition

In this context, a pure-strategy equilibrium corresponds to a tuple \((\hat{\Gamma}^2(\hat{I}), \hat{I}) \in BR_b \times [0, +\infty)\) *that solves*

\[
\begin{align*}
\min_{\hat{\Gamma}(I) \in BR_b} & \quad C^2(\hat{\Gamma}(I), J) \\
\text{s.t.} & \quad J \in \arg\max_{K \geq 0} \int_{C} \hat{Q}_{w, I}(c)G(c, K)dc - \Psi(K)
\end{align*}
\]
Equilibrium Characterization and the Impact of Commitment on Investment Incentives

Proposition

The exists a unique equilibrium is pure-strategies $(\hat{\Gamma}^2(\hat{I}), \hat{I})$ where \hat{I} is characterized by

$$\frac{\partial}{\partial I} \left(\int_C [1 - F(v^{-1}(h(\hat{I}, c)))]^{n-1} G(c, I) dc - \Psi(I) \right) \bigg|_{I=\hat{I}} = 0$$

Proposition

The following ranking holds: $\hat{I} < \hat{I} < I^e < I^*$

Conclusions