Signaling with Private Monitoring*

Gonzalo Cisternas and Aaron Kolb

June 25, 2021

Abstract

We study dynamic signaling when the informed party does not observe the signals generated by her actions. A forward-looking sender signals her type continuously over time to a myopic receiver who privately monitors her behavior; in turn, the receiver transmits his private inferences back through an imperfect public signal of his actions. Preferences are linear-quadratic and the information structure is Gaussian. We construct linear Markov equilibria using belief states up to the sender’s second-order belief. Because of the private monitoring, this state is an explicit function of the sender’s past play, leading to a novel separation effect through the second-order belief channel. Applications to models of organizations and reputation are examined.

1 Introduction

This paper introduces a new class of dynamic signaling games featuring private signals. These games can be seen as continuous-time versions of repeated noisy signaling games in which the traditional receiver privately sees imperfect signals of the sender’s actions—thus, the receiver endogenously develops a private belief about the sender’s type. In settings where this form of private information is relevant for the sender’s behavior, a complex problem in which players simultaneously form beliefs about each other’s beliefs arises. We offer the first tractable treatment of this largely unexplored problem within signaling games.

Incorporating private signals of behavior is important for applied theory work. In the theory of organizations, for instance, the literature emanating from the statistical theory of teams of Marschak and Radner (1972) recognizes that decision makers possess private information, albeit exogenous, about the external environment; individuals then attempt

*Cisternas: g.cisternas.leyton@gmail.com. Kolb: Indiana University Kelley School of Business, 1309 E. Tenth St., Bloomington, IN 47405 kolba@indiana.edu. We thank Alessandro Bonatti, Isa Chavez, Yi Chen, Wouter Dessein, Mehmet Eknekci, Eduardo Faingold, Robert Gibbons, Marina Halac, Stephen Morris, Alessandro Pavan, Andy Skrzypacz, Bruno Strulovici, Juuso Toikka, Vish Viswanathan, and numerous seminar audiences for useful conversations and comments.
to transmit their information, after which they take actions and the interaction typically ends.1 Organizations, however, are dynamic, which means that now endogenous information linked to actions can be subject to the same information frictions—dispersion, difficult transmission—a topic completely ignored in the analyses of teams. Similarly, virtually all models of reputation assume that the party interested in building a reputation is certain about the relevant audience’s perception; but this precludes the private possession of imperfect signals of behavior that is relevant in many markets,2 or natural features such as the subjective interpretation of information.

We attribute the scarcity of results in this area to the technical difficulties encountered in trying to examine models with these characteristics. First, there is higher-order uncertainty due to the players attempting to “forecast the forecasts of others” (Townsend, 1983). Second, these games are inherently asymmetric: when facing a sender of a fixed type, the receiver develops evolving private information in the form of a belief—and the latter player can signal information back. Third, most analyses will be nonstationary due to ongoing learning effects.

In this paper, we introduce a class of linear-quadratic-Gaussian games of incomplete information and private monitoring. A forward-looking sender (she) and a myopic receiver (he), both with linear-quadratic preferences, interact over a finite horizon. The sender has a normally distributed type. Our key innovation is to allow the receiver to privately observe a noisy signal of the sender’s action; in turn, we let the sender get feedback about the receiver via an imperfect public signal of the latter’s behavior. The shocks in the signals are additive and Brownian. Using continuous-time methods, we construct linear Markov equilibria (LMEs) with the players’ beliefs as the relevant states.3

Equilibrium construction and signaling. It is well known that the construction of nontrivial equilibria in games of private monitoring can be a daunting task. In fact, to estimate rivals’ continuation behavior under any strategy, players usually have to make an inference about their opponents’ private histories. Not knowing what their rivals have seen, the players will then rely on their past play, but this implies that the players’ inferences will vary with their own private histories. Thus, (i) probability distributions over histories must be computed, and (ii) the continuation games at off- versus on-path histories may differ.

With incomplete information, one expects this statistical inference problem to become one of the estimation of belief states that summarize the payoff-relevant aspects of the

1See Dessein and Santos (2006) and Rantakari (2008), also relying on quadratic preferences.

2See Bonatti and Cisternas (2020), examining consumer data collection, and Yang and Zhu (2019), studying a trading model, both with incomplete information. Stigler (1964) is an early discussion on oligopolies.

3We keep the “sender-receiver” terminology despite our receiver developing private information and transmitting it back. Allowing for a forward-looking receiver has virtually no impact on our construction, methods, applications, and main insights—we elaborate on this in Remark 1 and Section 6.
players’ private histories—our approach offers a parsimonious treatment of this issue. The quadratic preferences permit equilibria in which players’ strategies are linear in their posterior beliefs’ means (henceforth, beliefs). Conjecturing such strategies, learning is (conditionally) Gaussian: the receiver’s belief is linear in the history of his private signals, and the sender’s second-order belief—her belief about the receiver’s private belief—is linear in the histories of the public signal and her past play. The estimation of histories described in (i) is thus simplified by the fact that these are aggregated linearly.

The sender’s second-order belief is also private, as her actions depend on her type; the receiver must therefore forecast this state. The problem of the state space expanding is then circumvented by a key representation of the second-order belief under linear Markov strategies in terms of the sender’s type and the belief about it using the public signal exclusively (Lemma 1). Performing equilibrium analysis requires a nontrivial second-order belief that is only spanned by the rest of the states along the path of play (ii) above. With Markov states as sufficient statistics, the sender’s best-response problem becomes one of stochastic control, and we can use dynamic programming.

A key property is that the sender controls her own second-order belief, generalizing the traditional control of a public belief under imperfect public monitoring. But since this state is now an explicit function of past play, private monitoring has novel implications for signaling. Specifically, since different types behave differently in equilibrium, their past behavior leads them to expect their “receivers” to hold different beliefs. This perception of different continuation games across types then opens an additional channel for separation, an effect captured in the value of the second-order belief in the representation. The ensuing history-inference effect on signaling alters the traditional logic and effects derived in settings involving public signals exclusively, and it will be at play whenever an ex ante informed party does not see all the signals of her behavior; in this sense, public analyses are knife-edge.

Applications. The richness of our analysis lies in its ability to combine (i) private signals of behavior, (ii) long horizons, and (iii) feedback channels of a public nature. We study two applications that not only have (i)–(iii) as defining features, but also isolate the two types of incentives that the sender can have: revelation and concealment motives.

In Section 4.1, we analyze a novel coordination game that we use to explore the connection between learning and performance in organizations when information frictions are present. In our setting, a team’s performance increases with the proximity of the leader’s actions to both a state of the world (adaptation) and to a follower’s action (coordination). The leader maximizes the team’s performance while the follower tries to coordinate, resulting in incentives being aligned. Thus, the leader wishes to reveal the state of the world to the
follower, but the follower’s learning is imperfect—hence, gradual—and private. The players engage in natural guessing of the other’s understanding as the leader attempts to signal her knowledge.

In this context, we show that higher-order uncertainty, via the history-inference effect it creates, can lead to more information being transmitted relative to the public case in which the follower’s belief is commonly known. Yet, the team’s performance is lower. Thus, organizations with worse information channels can exhibit a better understanding of their economic environments, and learning need not reflect performance. In fact, as we show, learning is a measure of coordination costs in an organization.

In Section 4.2, we examine a new model of reputation in which the informed party wants to appear as a particular type but does not know her reputation with certainty. Consider a politician or expert whose private information is her bias on a relevant issue. It is costly for the politician to take actions away from her type, but she would also like to be perceived as neutral at a terminal time (e.g., a reelection): she suffers a terminal quadratic loss that increases in the distance between the belief of a news outlet (the receiver) and the type’s prior (capturing the unbiased type). The politician receives feedback regarding her reputation from the outlet’s reporting; naturally, the latter is public and imperfect.

Clearly, the direct effect of more precise public feedback is that it allows the politician to better tailor her actions to her reputation. With higher-order uncertainty, however, there is also a strategic effect. Specifically, since higher types take higher actions due to their higher biases, those types will perceive their reputation to be more upward biased. Because higher types will then attempt to offset higher beliefs, the history-inference effect reduces the informativeness of the politician’s action, effectively enabling her to better conceal her true type—having access to worse feedback can thus increase her payoffs.

Finally, a common element of both applications is a non-monotonic signaling coefficient due to the history-inference at play, which we link to predictions of behavior in each case.

Existence of LME and technical contribution. The games studied are asymmetric, both in terms of the players’ preferences and their private information (a fixed state versus a changing one). Thus, the players can signal at different rates, which is in stark contrast to an existing literature on symmetric multisided learning. The technical contribution of this paper then lies in offering a general method for finding LME in such asymmetric settings.

Specifically, due to the Gaussian structure, the belief states that we employ are stochastic posterior means that are also coupled with two deterministic second moments: the receiver’s posterior variance (relevant because it shapes the sensitivity of the receiver’s belief to his private signals), and the weight of the sender’s type in the representation (linked to the
sender’s learning, shaping the history-inference effect). Using dynamic programming, one can transform the problem of the existence of an LME to finding a solution to a boundary value problem (BVP) including ODEs for the two aforementioned functions of time and for the coefficients in the sender’s strategy. The two learning ODEs endow the BVP with exogenous initial conditions, while the rest carry terminal ones arising from the static game of two-sided incomplete information at the end of the interaction.

With ODEs in both directions, proving the existence of a solution to such a BVP is a complex “shooting” problem: not only must solutions to all ODEs exist, but they must land at specific (potentially endogenous) values. Symmetric environments are tractable because all players can signal at the same rate, leading to a single learning ODE; the shooting problem becomes one-dimensional, and arguments using the intermediate value theorem apply. To the best of our knowledge, no method for existence beyond this case has been introduced.

Solving a BVP is, nevertheless, a fixed-point problem: the evolution of the learning coefficients depends on the signaling that takes place over time, but the latter depends on the path of the learning coefficients because these are taken as given in the best response problem. Thus, our method is based on a fixed-point argument. Specifically, given functions that proxy for solutions to our learning ODEs, we obtain candidate equilibrium coefficients by solving their respective ODEs backwards. Equipped with the latter tuple, we obtain solutions to the learning ODEs by solving them forward. This two-step shooting procedure induces a continuous operator on a suitable space of functions, to which Schauder’s fixed-point theorem applies. While intuitive, this method is technically challenging—we elaborate on its details and advantages in Section 5 where, up to technical conditions, we prove the existence of LME for horizon lengths that are (inversely) proportional to the environment’s initial uncertainty, irrespective of the discount rate. Importantly, the method can be exported to other asymmetric games too.

Related Literature. A long literature on multisided private monitoring has developed in repeated games with complete information, where the issue of inferences of private histories has been handled very differently relative to us. Closest in spirit is Phelan and Skrzypacz (2012), where such inferences are coarsened into beliefs over a finite set of states; instead, our players’ states take infinitely many values and completely determine their beliefs about the other player’s state. Other approaches include Mailath and Morris (2002), examining equilibria that condition on finite histories when monitoring is nearly public, and Ely and

\footnote{For instance, one must find initial values for the coefficients in the strategy so that the resulting terminal values match the static Nash equilibrium at the end of the game, which can be endogenous due to learning.}

\footnote{See Bonatti et al. (2017) studying Cournot competition. In insider trading models such as Back et al. (2000), linear payoffs further simplify this issue because terminal conditions are pinned down by no arbitrage.}
Välimäki (2002), where mixed-strategy equilibria render such inferences irrelevant. Relative to this literature, we focus on one-sided private monitoring but add private information at the outset to construct and quantify natural, yet nontrivial, belief-dependent Markov equilibria.

Regarding signaling models, in traditional static (i.e., sequential-move, one-shot) noisy signaling games (e.g., Matthews and Mirman, 1983; Carlsson and Dasgupta, 1997), the signal realization is trivially hidden from the sender at the moment of action, but the receiver’s prior belief is common knowledge. In dynamic environments, the receiver’s belief is public in settings with observable actions and an exogenous, public stochastic process (e.g., Kremer and Skrzypacz, 2007; Daley and Green, 2012; Kolb, 2019; Gryglewicz and Kolb, 2021) or when there is imperfect public monitoring, as in Heinsalu (2018) and Dilmé (2019). By contrast, our assumptions on payoffs and signal structure make all players’ beliefs private.

Private beliefs arise in Foster and Viswanathan (1996) and Bonatti et al. (2017), where multiple players have private information and there is an imperfect public signal; a representation result for first-order beliefs eliminates the need for higher-order beliefs. Bonatti and Cisternas (2020) in turn examine two-sided signaling when firms privately observe a summary of a consumer’s past behavior to price discriminate; via the prices they set, firms reveal their information to the consumer. Finally, private beliefs can also result from an exogenous private signal of the sender’s type, as in Feltovich et al. (2002).

To conclude, this paper contributes to a growing literature using continuous-time methods to analyze dynamic incentives. Sannikov (2007) examines two-player games of imperfect public monitoring; Faingold and Sannikov (2011) reputation effects with behavioral types; Cisternas (2018) games of ex ante symmetric incomplete information; Bergemann and Strack (2015) dynamic revenue maximization; and Bohren (2018) stochastic games of investment.

2 Model

We consider two-player dynamic noisy signaling games of a linear-quadratic-Gaussian (LQG) nature where the ex ante informed player does not directly observe the signals of her actions.

Model basics. A forward-looking sender (she) interacts with a myopic receiver (he). Time runs continuously over a finite interval $[0,T]$, $T < \infty$. The environment is parametrized by the realization of a random variable θ that is the sender’s private information, or her type. We assume that θ is normally distributed with mean $\mu \in \mathbb{R}$ and variance $\gamma^\theta > 0$; the latter are exogenous parameters in the model.

We denote the sender’s chosen action at time t by a_t, while the receiver’s analog is denoted by \hat{a}_t, $t \in [0,T]$. Both actions take values over the real line. Given realized action paths
\((a_t)_{t \in [0,T]}\) and \((\hat{a}_t)_{t \in [0,T]}\), the sender’s ex post payoff is given by

\[
\int_0^T e^{-rt} u(a_t, \hat{a}_t, \theta) dt + e^{-rT} \psi(\hat{a}_T),
\]

(1)

where \(u : \mathbb{R}^3 \to \mathbb{R}\) is a quadratic function and \(r \geq 0\) is a discount rate. For simplicity, we assume that the terminal payoff function \(\psi : \mathbb{R} \to \mathbb{R}\) is a concave quadratic—its dependence on the receiver’s action resembles the sequentiality of traditional sender-receiver games.

The receiver, on the other hand, is concerned only about maximizing his flow utility at all instants of time. Given realized actions \(a_t\) and \(\hat{a}_t\), his ex post time-\(t\) payoff is denoted

\[
\hat{u}(a_t, \hat{a}_t, \theta)
\]

(2)

with \(\hat{u} : \mathbb{R}^3 \to \mathbb{R}\) also a quadratic function. We will be interested in the case where \(u\) and \(\hat{u}\) are strictly concave in \(a\) and \(\hat{a}\), respectively; i.e., taking actions is costly for each player according to a quadratic function. For simplicity, we set \(\partial^2 u/\partial a^2 = \partial^2 \hat{u}/\partial \hat{a}^2 = -1\); with quadratic preferences, this simply amounts to a normalization of the players’ payoffs.

Turning to the information structure, the sender knows \(\theta\) before play begins. Instead, the receiver only knows its distribution \(\theta \sim \mathcal{N}(\mu, \gamma^o)\), and this is common knowledge. There are also two noisy signals that are linear in the players’ actions,

\[
dX_t = \hat{a}_t dt + \sigma_X dZ_t^X \quad \text{and} \quad dY_t = a_t dt + \sigma_Y dZ_t^Y,
\]

(3)

where \(Z^X\) and \(Z^Y\) are orthogonal Brownian motions and \(\sigma_X, \sigma_Y \in \mathbb{R}_+\) are volatility parameters. Our key innovation is to make \(Y\)—which carries information about the sender’s actions—\textit{privately observed by the receiver}; instead, \(X\) carrying the receiver’s action remains \textit{public}. This mixed private-public information structure is important for our construction, but it is also appropriate for two reasons: it makes the departure from the existing literature minimal, and it is natural in the applications we study.

Due to the full-support structure of (3), the players cannot observe each other’s actions. As the sender conditions her actions on her type, the receiver will then rely on his private signal \(X\) to update his belief about \(\theta\). Our focus is on the cases in which the sender needs to forecast the resulting private belief for her best response.\(^6\) The next assumption narrows the analysis to those non-trivial cases; subscripts in utility functions denote partial derivatives.

Assumption 1. (i) \(u_{a\theta} \neq 0\); (ii) \(|\hat{u}_{a\theta}| + |\hat{u}_{a\hat{a}}| \neq 0\); (iii) \(|u_{a\hat{a}}| + |\hat{u}_{a\hat{a}}| + |\psi_{a\hat{a}}| \neq 0\).

Parts (i) and (ii) ensure that the players condition their actions on their “first-order”

\(^6\)The public signal \(X\) is clearly used in this forecasting exercise; but it will not be the sole input.
private information: the sender’s action is sensitive to her type, while the receiver’s will be sensitive to his private belief. Part (iii) in turn guarantees the use of a second-order belief: either a non-trivial strategic interaction term ($u_{\hat{a}a} \neq 0$), or a nonlinearity coming from the receiver’s action ($|u_{\hat{a}a}| + |\psi_{\hat{a}a}| \neq 0$) will force the sender to forecast the receiver’s belief to determine her behavior. Further technical conditions that we use to ensure the existence of the equilibria studied are presented in Section 5.\(^7\)

Applications. To put our model on concrete ground, we now introduce our applications.

With quadratic preferences, types can only face one of two incentives depending on what they perceive the receiver’s belief to be: revelation or concealment motives. The revelation motive manifests in the sender steering the receiver’s belief in the direction of the true type. If this motive stops before reaching the type, or continues beyond it, we say that the concealment motive kicks in: manipulating the belief away from the type.

Our applications therefore purposely intend to isolate each of these cornerstone motives, recognizing that all environments will display incentives that are a mix of these two extremes. In the *coordination game* that we study, all types have a revelation motive, but one that is trumped by the presence of information frictions. In the *reputation game* that we study, all types generically want to conceal their identities, but this turns out to be costly. Our goal is to understand how the presence of higher-order uncertainty can affect behavior, learning, and payoffs relative to public analyses where beliefs are common knowledge. To this end, we vary the volatility σ_X of the public feedback X: as a measure of the quality of the feedback received by the sender, it shapes the extent of higher-order uncertainty in each setting.

Application 1: A coordination game. Our first example aims to shed light on a classic problem faced by organizations: how to best adapt to new economic conditions when coordinating activities is desired yet information is dispersed among decision-makers? We interpret θ as the realized value of a new state of the world and consider the payoffs

$$\frac{1}{4} \int_0^T e^{-rt} \left\{ -(a_t - \theta)^2 - (a_t - \hat{a}_t)^2 \right\} dt \quad \text{and} \quad \hat{u}(a_t, \hat{a}_t, \theta) = -\frac{1}{2} (\hat{a}_t - a_t)^2.$$

A “leader” (e.g., top management of an organization—the sender) and a “follower” (e.g., a key division—the receiver) form a team. The performance of the team depends on both the leader’s adaptation to the environment and coordination. The leader wants to maximize the performance of this form of organization, while the follower simply wants to coordinate; we discuss the latter assumption shortly. Finally, the scalars attached simply deliver the desired normalization $u_{aa} = \hat{u}_{\hat{a}a} = -1$.

\(^7\)These conditions are minimal in that they pertain to the existence of a non-trivial linear Bayes’ Nash equilibrium in the static game of two-sided incomplete information that arises at the terminal time T.

Our starting point is the wide recognition that coordination needs are a central element driving organizational performance (e.g., Milgrom and Roberts, 1992). Thus, while leaders may be able to visualize how to respond to change, they will need other decision-makers to understand the new paradigms to adapt efficiently. A leader can then begin taking actions to move the organization in her desired direction, but the challenge is that the organization’s inferences are likely to be subjective. A natural, yet largely unexplored, two-way inference problem arises in those settings: both parties are trying to guess each other’s understanding simultaneously as decisions are being made. Our approach to making progress in this area is via a two-player signaling game in which any attempt by the leader to signal the new state of the world will inevitably result in the receiver developing a private belief.

In this context, how does the leader, via her signaling, manage the transition and what are the corresponding implications on performance and learning? Because our ultimate goal is to uncover the effects of higher-order uncertainty on outcomes, we have aligned the players’ incentives by making the receiver simply interested in following at all times—this choice is analogous to the common-interest assumption in the statistical theory of teams (e.g., Marschak and Radner, 1972) intended to isolate the effects that information frictions can have on organizations’ performance. Thus, all leader types will happen to have a revelation motive, which will vary with the quality of the feedback received, σ_X. We note that our methods, however, can accommodate biases—and hence, concealment motives—too.

Application 2: A reputation game. For notational simplicity, let us normalize the prior mean μ to zero. We consider the following payoffs for our players:

$$
\frac{1}{2} \left[-\int_0^T e^{-rt}(a_t - \theta)^2 dt - e^{-rT}\psi \hat{a}_T^2 \right], \text{ with } \psi > 0, \text{ and } \hat{u}(a_t, \hat{a}_t, \theta) = -\frac{1}{2}(\hat{a}_t - \theta)^2.
$$

In this specification, the sender finds it costly to take actions away from her type $(-(a_t - \theta)^2$ term) and she benefits from the receiver’s terminal action a_T being close to the prior mean $\mu = 0$. In turn, the receiver aims to solve a classic prediction problem at all times: he will choose the best predictor of the type given his information.

We interpret this model as one of reputation for neutrality. Consider a politician or

8With aligned preferences, noiseless talk renders the problem trivial. Two remarks are then in order. First, imperfect communication is standard in analyses of organizations, with much of the common-interest team theory literature involving imperfect message transmission; ours can then be seen as an action-based counterpart, a direction suggested by Marschak (1955) (p. 157). Second, conveying information verbally can be difficult in real organizational problems, as much of the relevant knowledge there is hard to codify and transfer (or tacit; Garicano, 2000). This dimensionality issue—that productive know-how is more complex than the communication channels available—is what shutting down talk delivers in our model: the channel’s dimension shrinks to 0 while the state of the world has dimension 1. Interestingly, work in the strategic management literature bridges both remarks: due to its complexity, tacit knowledge transmission is linked to observing its application, and hence rooted in actions (Nonaka, 1991; Grant, 1996).
expert—the sender—with $\theta \sim N(0, \sigma^2)$ representing the intensity of her (horizontal) bias on a relevant issue; the type $\theta = 0$ captures an unbiased type.\(^9\) The receiver is a news outlet that gets private signals Y of the politician’s past behavior\(^10\) and that reports its perception of the bias. The resulting reporting process X is naturally public; imperfect (e.g., journalist turnover, idiosyncratic opinions, etc.); and fair on average (the shocks have zero mean on average). We are interested in the case in which the politician wants the outlet’s time-T perception to be as close as possible to $\mu = 0$—that is, she wants to appear neutral at a final future date (e.g., a time at which she is to be appointed to a high-profile position).

Unlike in the previous example, all types now have a concealment motive. Specifically, since the prior is that the politician unbiased, all types would like to “pool” on a particular action, or even refrain from taking actions at all, so that no information is conveyed and their reputation remains at the prior. However, all types face short-run temptations that prevent them from doing so ($-(a_t - \theta)^2$ term). Clearly, more precise reporting as measured by low values of σ_X helps the politician in that she can better tailor her actions to her reputation. But how does this better ability to tailor interact with her “commitment” problem?

Remark 1. The equilibrium studied remains such when the receiver becomes forward looking due to this player solving a prediction problem. Refer to Section 6 for more details.

We close the section with the definition of strategies and equilibrium.

Strategies and Equilibrium Concept. The full-support monitoring implies that the only off-path histories for each player are those in which that same player has deviated. Thus, we use the Nash equilibrium concept for defining the equilibrium of the game and leave off-path behavior unspecified at this point, as imposing sequential rationality does not further refine the set of equilibrium outcomes in games with unobserved actions.\(^11\)

A (pure, action-free) admissible strategy for the sender is any square-integrable real-valued process $(a_t)_{t \in [0, T]}$ that is progressively measurable with respect to the filtration generated by (θ, X). For the receiver, the measurability restriction is with respect to (X, Y), with the same integrability condition at play.\(^12\) Let $E_t[\cdot]$ and $\hat{E}_t[\cdot]$, $t \in [0, T]$, denote the sender’s and receiver’s expectation operators, respectively.

\(^9\)Also in politics, but with a different motivation, Bouvard and Lévy (2019) study a horizontal model of reputation with quadratic preferences in which uncertainty is symmetric.

\(^10\)Actions such as voting, contributions, favors, statements to groups of influence, etc. often have a private nature, and hence are likely to be leaked with error, justifying the noise in Y.

\(^11\)See Mailath and Samuelson (2006) pp. 395-396. With hidden actions, a Nash equilibrium fails to be sequentially rational only if it dictates suboptimal behavior for a player after her own deviation. Since such off-path histories are not reached, the same outcome arises if optimal behavior is specified after the deviation.

\(^12\)Square integrability refers to $\int_0^T a_t^2 dt$ and $\int_0^T \hat{a}_t^2 dt$ being finite in expectation. This ensures that a strong solution to (3) exists (Ch. 1.3 and 3.2 in Pham, 2009) and thus the outcome of the game is well defined.
Definition 1 (Nash equilibrium). An admissible pair \((a_t, \hat{a}_t)_{t \geq 0}\) is a Nash equilibrium if:

(i) the process \((a_t)_{t \in [0, T]} \) maximizes \(E_0 \left[\int_0^T e^{-rt} \varphi(a_t, \hat{a}_t, \theta) dt + e^{-rT} \psi(\hat{a}_T) \right] \); and

(ii) for each \(t \in [0, T] \), \(\hat{a}_t \) maximizes \(\hat{E}_t[\hat{u}(a_t, \hat{a}_t, \theta)] \) when \((\hat{a}_s)_{s < t}\) has been followed.

The LQG structure suggests looking for Nash equilibria where the strategies are linear functions of the signals observed by each player. While this is a simple task in static settings, it is a far more challenging enterprise in dynamic environments. Specifically, the core of the issue is that evaluating the candidacy of an equilibrium profile requires assessing the value of deviations; but with incomplete information and imperfect monitoring, the sender will find it optimal to condition on more information than \((\theta, X)\) in the continuation game after she deviated. The next section formalizes this idea by means of a belief-based recursive method for finding linear Nash equilibria that has two key properties: first, it demonstrates that finding such equilibria is inherently linked to imposing full sequential rationality under a richer set of strategies; second, it shows that the ensuing linear aggregation of signals is the outcome of players naturally relying on their beliefs to guide their behavior.

3 Equilibrium Analysis: Linear Markov Equilibria

In this section we lay out our method for finding a Nash equilibrium in linear strategies. The starting point is that any recursive approach will naturally demand the players to form beliefs about each other’s private information in order to be able to assess the continuation game as the interaction unfolds. The next subsection offers an overview of the belief states employed in our construction, and it builds intuition for why a second-order belief is needed.

3.1 Belief States: An Overview

We will characterize equilibria in which, on and off the path of play, the sender and receiver behave according to the linear Markov strategies

\[a_t = \beta_{0t} + \beta_{1t} \hat{M}_t + \beta_{2t} L_t + \beta_{3t} \theta \]
\[\hat{a}_t = \delta_{0t} + \delta_{1t} \hat{M}_t + \delta_{2t} L_t, \]

where the coefficients \(\beta_{it}, i = 0, 1, 2, 3 \), and \(\delta_{jt}, j = 0, 1, 2 \), are differentiable functions of time, and

\[\hat{M}_t := \hat{E}_t[\theta], \quad M_t := E_0[\hat{M}_t], \quad \text{and} \quad L_t := E_t[\theta|\mathcal{F}_t^X]. \]
That is, \hat{M}_t is the receiver’s first-order belief, M_t the sender’s second-order counterpart, and L_t is the belief about θ using the public information exclusively, $t \in [0, T]$. (For brevity, we refer to the means of posterior beliefs as simply “beliefs.”) The deterministic nature of the coefficients will encode learning and time-horizon effects.

Consider our coordination game: $u(\theta, a, \hat{a}) \propto -(a-\theta)^2 - (a-\hat{a})^2$ and $\hat{u}(\theta, a, \hat{a}) \propto -(a-\hat{a})^2$. Since the sender has an adaptation motive, θ is a relevant state; but because the receiver wants to match the sender’s action, \hat{M} is relevant for this player’s behavior. The sender’s coordination motive then forces her to forecast \hat{M}, and the second-order belief M appears. More generally, (iii) in Assumption 1 ensures that M is needed as a proxy for \hat{M} for the sender to compute her continuation payoff.

To guide intuition, we preview key properties of this second-order belief state that we establish in this section. These properties illustrate: the “beliefs about beliefs” problem that players face; how this problem interacts with the determination of optimal behavior; and why the state space does not grow indefinitely as a result of an infinite regress problem. As a byproduct, the appearance of the public state L is explained. Specifically:

(i) after all private histories of the sender, M_t is an explicit linear function of her past actions $(a_s)_{s<t}$ and past realizations of the public signal $(X_s)_{s<t}$, $t \in [0, T]$;

(ii) $(M_t)_{t \in [0, T]}$ is the only state variable directly controlled by the sender;

(iii) M_t is a convex combination of θ and L_t, $t \in [0, T]$, if (4)–(5) are followed.

That M depends on X is intuitive: \hat{M}, via the receiver’s action, enters the public signal. Due to the private monitoring, however, the sender also relies on her past play to forecast \hat{M}: higher past actions are statistically informative of higher values of Y observed by the receiver, so M should be higher for any fixed public history of X. The contrast to public monitoring is clear: if Y were public, past behavior would be irrelevant in this forecasting exercise, as the receiver’s belief would be uniquely determined by the realizations of Y.

The explicit dependence on past actions implies that M is controlled by the sender. Further, this is the only state directly controlled because L, as a public state, is ultimately a function of the history of X only, and this latter signal is not directly affected by the sender (see (3)). Thus, finding (linear) Nash equilibria requires determining optimality of the sender’s behavior with respect to M. This observation is important because, by (iii), if the sender is on path, her action does not depend explicitly on M due to the latter state becoming exclusively a function of θ and L, in turn suggesting that one could dispense with M in the analysis. This, however, is not possible because of the need to evaluate deviations when assessing the optimality of any (θ, L)-dependent strategy. In doing so, the sender must
rely on M to calculate her continuation value, but after deviations M is not spanned by θ and L due to the dependence on past play. Further, as the unique controlled state, changes in the continuation value necessarily occur via changes in M—the use of this state is critical.

A second implication of the explicit dependence on past actions is that M is private information to the sender in equilibrium: by (iii), the second-order belief is a function of the sender’s type along the path of play, as her equilibrium actions depend on θ. The receiver must then forecast this state itself, but the state space does not grow further because M is linear in θ and L under the linear Markov strategy (4). Since L is used in the receiver’s forecasting exercise, it becomes a relevant state for both players.

The next two subsections formalize these ideas allowing us to pose a well-defined best-response problem for the sender. We begin this task with (iii): namely, with a representation of the second-order belief under linear Markov strategies.

3.2 Belief Representation and History-Inference Effect

We begin by establishing a representation for the second-order belief M under the linear-Markov strategies (4)–(5). (To avoid repetition, we defer an expression under deviations to the next section.) This step is key in our analysis, both conceptually and technically.

Indeed, as different types proceed with taking different actions, their reliance on past play to assess the continuation game will lead them to hold different beliefs—in the sender’s strategy (4), this leads to M becoming a source of heterogeneity in addition to the direct contribution that the type has on behavior. In equilibrium, the receiver must account for this channel to form a correct belief about the type, but this amounts to anticipating the form of M in a candidate linear Markov equilibrium. Conceptually, then, the representation encodes the signaling that occurs via the second-order belief channel.

Given the LQG structure, it is natural to expect a representation of the form

$$M_t = \chi_t \theta + (1 - \chi_t)L_t,$$

where $L_t := \mathbb{E}[\theta|\mathcal{F}_t^X]$ and $(\chi_t)_{t\in[0,T]}$ is deterministic. Intuitively, behind (6) is how the sender balances the information conveyed by her private histories—$\chi_t \theta$ term—with that conveyed by the public signal—$(1 - \chi_t)L_t$ term—in her forecasting exercise.\footnote{With pure strategies, the outcome of the game should be a function of the signals available to the players, so M must be a function of θ and X; the time-varying weights and the additive separability are consequences of the induced Gaussian learning under linear strategies. Also, from (6) and the fact that deviations go undetected, the receiver does not need to rely on additional states beyond L and M.}

A functional form like (6) is operational only if we know how (χ, L) depends on the candidate equilibrium linear Markov strategies (4)–(5). Indeed, because the receiver must
anticipate how \((\chi_t)_{t \in [0,T]}\) will evolve in equilibrium to formulate both his belief and best-response, the sender is forced to anticipate the same weight to evaluate her possible courses of action. Technically, therefore, having up-front knowledge of a representation is a requirement for being able to set up the sender’s best response problem.\(^{14}\)

The main result of this section (Lemma 1) establishes the representation (6) where \(\chi\) and \(L\) are characterized via laws of motion. To build towards the result, it is instructive to elaborate on how it is obtained. First, our approach is constructive: it starts by assuming (6) with \((L_t)_{t \in [0,T]}\) a general process depending only on the public information. The receiver then always assumes that the representation holds, as deviations are never detected due to the full support of \(Y\). Inserting (6) into (4), the receiver expects, at all times,

\[
a_t = \alpha_{0t} + \alpha_{2t} L_t + \alpha_{3t} \theta
\]

where \(\alpha_{0t} := \beta_{0t}\), \(\alpha_{2t} := \beta_{2t} + \beta_{1t}(1 - \chi_t)\), and \(\alpha_{3t} := \beta_{3t} + \beta_{1t} \chi_t\). \(^{15}\)

Since the extent of information transmission is guided by the weight \(\alpha_{3t}\) on the type, it is suitable to refer to it as the signaling coefficient. We note, however, that this coefficient, via \(\beta_1\) and \(\beta_3\), is a mix of both non-strategic (i.e., static) and strategic (i.e., dynamic) motives.

The receiver then filters \(\theta\) assuming that \(Y\) is driven by (7). This problem is (conditionally) Gaussian (Liptser and Shiryaev, 1977, Theorems 12.6 and 12.7), so this player’s belief is characterized by a stochastic mean \((\hat{M}_t)_{t \in [0,T]}\) and a deterministic variance

\[
\gamma_t := \hat{\mathbb{E}}_{t}[\theta - \hat{M}_t]^2, \quad t \in [0,T],
\]

where we have omitted the hat symbol for notational convenience, and where the evolution of \(\hat{M}\) depends on \(\gamma\). Importantly, the linearity of the signal structure renders the pair \((\hat{M}, X)\) under (5) (conditionally) Gaussian too. The sender’s problem of filtering \(\hat{M}\) using \(X\) then yields another mean-variance pair, but with the corresponding mean \(M_t\) now depending explicitly on her past actions: for any given history of the public signal, changes in the sender’s history of play will shift the mean of her belief. One can then solve for \(M_t\) under the linear strategy (4) to obtain differential equations for \((\chi, L)\).

Lemma 1. Suppose that \((X, Y)\) is driven by (4)–(5) and the receiver believes that (6) holds, with \((L_t)_{t \in [0,T]}\) a process that depends only on the public information.\(^{15}\) Then (6) holds at

\[^{14}\text{As for } L_t = \mathbb{E}[\theta|\mathcal{F}_t^X],\text{ the representation is still key in that it delivers a law of motion for this state.}\]

\[^{15}\text{Formally, } (L_t)_{t \in [0,T]} \text{ can be any square-integrable process progressively measurable w.r.t. } (\mathcal{F}_t^X)_{t \in [0,T]}.\]
all times if and only if $L_t = \mathbb{E}[\theta|F_t^X]$ and $\chi_t = \mathbb{E}_t[(M_t - \hat{M}_t)^2]/\gamma_t$, where

$$
\dot{\gamma}_t = -\frac{\gamma_t^2(\beta_3 t + \beta_1 t \chi_t)^2}{\sigma_Y^2},
\quad \gamma_0 = \gamma^0,
$$

(9)

$$
\dot{\chi}_t = \frac{\gamma_t(\beta_3 t + \beta_1 t \chi_t)(1 - \chi_t)}{\sigma_Y^2} - \frac{\gamma_t \chi_t^2 \delta_{1t}^2}{\sigma_X^2},
\quad \chi_0 = 0,
$$

(10)

dL_t = $(l_{0t} + l_{1t} L_t)dt + B_t dX_t,
\quad L_0 = \mu,
$$

(11)

with (l_{0t}, l_{1t}, B_t) deterministic and given in (A.7).

The lemma confirms that the public state satisfies $L_t = \mathbb{E}[\theta|F_t^X]$, and characterizes the weight χ_t in (6) as a ratio of the players’ posterior variances. It further offers dynamics for their evolution that are coupled with that in (9) for γ. The latter ODE is standard and states that the variance of the receiver’s belief decays at a deterministic rate that is increasing in the signaling coefficient. The ODE (10) for χ on the other hand captures how types progressively separate over time due to their gradually differing beliefs. Finally, the linearity of L in the histories of X—by virtue of the Gaussian learning—is clear from (11).

Using these findings, we can uncover the economics behind the representation $M_t = \chi_t \theta + (1 - \chi_t) L_t$. Consider first the beginning of the game. Since there is no second-order uncertainty at the outset, $M_0 = \mu$, an expression that is also delivered by the representation due to $\chi_0 = 0$ and $L_0 = \mu$ from the lemma. As soon as the sender conditions her actions on her type, however, the signal Y becomes informative and the sender loses track of the receiver’s belief (i.e., $\mathbb{E}_t[(M_t - \hat{M}_t)^2] > 0$). Past actions are then useful in forecasting \hat{M}, a phenomenon that is readily apparent when there is non-trivial signaling at time 0: in (10), $\dot{\chi}_0 = \gamma^0 \beta_{30}^2 / \sigma_Y^2 > 0$ if $\beta_{30} \neq 0$, and the connection between M and θ present in (6) emerges.

To understand why the ODEs (9) and (10) are coupled, assume that the last term in (10), $\gamma_t \chi_t^2 \delta_{1t}^2 / \sigma_X^2$, is absent. Then, it is easy to verify that any solution to (9)–(10) satisfies

$$
\chi = 1 - \frac{\gamma_t}{\gamma^0}.
$$

Intuitively, if the sender has signaled more aggressively, she will expect the receiver to be more certain about her type, so lower values of γ are inherently linked to higher values of χ. Clearly, the rates of change of each depend on the signaling coefficient $\beta_{3t} + \beta_{1t} \chi_t$.

The presence of a public feedback channel nevertheless alters the previous relationship. This effect is captured by the last term in (10), where the key term is the signal-to-noise ratio of X, δ_{1t}/σ_X^2. A higher signaling coefficient δ_1 by the receiver, or a lower volatility σ_X, improves the quality of X, thereby inducing the sender to rely more on the public information to forecast \hat{M}: in the χ-ODE, more downward pressure is put on the growth of
χ as \(\delta_1 / \sigma_X^2\) grows. In the limit as \(\delta_1 / \sigma_X^2 \nearrow \infty\), (10) cannot “take off,” and so \(\chi \equiv 0\); also, someone who has access only to the public signal learns the receiver’s belief in real time. Thus, \(M_t = \chi_t \theta + (1 - \chi_t)L_t\) reduces \(M_t = \hat{M}_t\), i.e., the environment becomes public.

To anticipate the main phenomenon under study, notice that when the environment is public—because \(Y\) public or because \(\sigma_X = 0\)—an LME naturally entails the sender and receiver acting linearly in \((\theta, \hat{M})\) and \(\hat{M}\), respectively.\(^{16}\) The common knowledge of \(\hat{M}\) implies that the extent of signaling is then solely determined by the weight attached to the type in the sender’s strategy: for a given history of \(Y\), all types agree on the value of \(\hat{M}\). This notion breaks with private monitoring, as reflected in the correction

\[\beta_{1t} \chi_t\]

in the signaling coefficient (8). We refer to it as the *history-inference effect* on signaling.

3.3 The Long-Run Player’s Best-Response Problem

The representation implies that, on the equilibrium path, the sender’s actions depend only on his type \(\theta\) and the public belief \(L\) as in (7). To perform equilibrium analysis, however, the sender must evaluate deviations from (7); but at off-path histories, the representation does not hold due to its reliance on (4) being followed. The sender must then account for \(M\) and \(L\) separately: the former as an estimate of the receiver’s private belief, and the latter because the receiver uses it in forecasting the sender’s second-order belief.\(^{17}\)

Laws of motion for \(M\) and \(L\) for arbitrary strategies of the sender (up to technical conditions specified shortly) are presented next.

Lemma 2 (Controlled dynamics). *Suppose that the receiver follows (5) and believes that (4) and (6) hold. Then, if the sender follows \((a'_t)_{t \in [0, T]}\),*

\[
\begin{align*}
\frac{dM_t}{\sigma_Y^2} & = \frac{\gamma_t \alpha_{3t}}{\sigma_Y^2} (a'_t - [\alpha_{0t} + \alpha_{2t}L_t + \alpha_{3t}M_t]) dt + \frac{\chi_t \gamma_t \delta_{1t}}{\sigma_Y} dz_t \\
\frac{dL_t}{\sigma_X^2} & = \frac{\chi_t \gamma_t \delta_{1t}}{\sigma_X^2 (1 - \chi_t)} \left[\delta_{1t} (M_t - L_t) dt + \sigma_X dz_t \right],
\end{align*}
\]

\(^{16}\)From the viewpoint of the optimality of the receiver’s behavior, this notion of LME is “perfect” when \(Y\) is public, but only *Nash* when \(Y\) is private but \(\sigma_X = 0\).

\(^{17}\)That \(M\) is no longer spanned by \(\theta\) and \(L\) after deviations reflects the divergence in the game’s structure at on- versus off-path histories. This also happens in models of incomplete information with public signals such as Foster and Viswanathan (1996), Bonatti et al. (2017) and Cisternas (2018), where instead *exogenous* private beliefs must be accounted for after deviations. See also the survey article of (Kandori, 2002) describing the lack of recursive structure in traditional games of private monitoring.
where \(Z_t := \frac{1}{\sigma_X} [X_t - \int_0^t (\delta_{0s} + \delta_{1s} M_s + \delta_{2s} L_s) ds] \) is a Brownian motion from the sender’s perspective. Also, \(\mathbb{E}_t[(M_t - \hat{M}_t)^2] = \gamma_t \chi_t \) for any such \((a'_t)^t_{t \in [0,T]}\).

The dynamics (12)–(13) are involved, so let us focus on a few economic properties. First, revisiting (i) from Section 3.1, we see that \(M \) can be written as an explicit function of the past actions of the sender and past realizations of \(X \), an issue at the heart of our construction. To see this, one can insert the definition of \(Z_t \) into the law of motion (12) of \(M \). This yields a dynamic that is linear in \(M \), from which the solution \(M_t \) is a linear function of \((a_s, L_s, X_s)_{s < t}\); but \(L_s \) itself is a linear function of \((X_T)_{T < s}\) via (11).

Second, from the drifts of \(M \) and \(L \) we confirm that \(M \) is the only state directly controlled by the sender. In particular, not only does this non-trivial state “appear” after deviations, but it is through establishing optimality of this state that equilibrium behavior must be pinned down—this justifies our expositional choice to start with an extended strategy (4) that treats \(M \) and \(L \) differently as opposed to the outcome (7). From (12), moreover, the sender expects the receiver to be more responsive to her actions when the receiver is more uncertain (high \(\gamma \)) or when there is more signaling (high \(\alpha_3 \)).

Finally, \(M \) feeds into the drift of \(L \). This implies that the sender expects to influence the public belief despite not being able to directly affect the public signal \(X \): higher actions suggest higher values of the receiver’s belief, which ultimately influences \(X \). Changes in \(\hat{L} \) then matter for the sender’s incentives because the receiver uses this state to forecast \(M \).

As a technical, but important, observation, we note that the dynamics (12)–(13) depend on solutions \((\gamma, \chi)\) to the ODEs (9)–(10). This dependence originates from the receiver’s learning process: since deviations are hidden, this player always assumes that the representation (6) holds when constructing his belief. The next result shows that the drifts and volatilities are all well defined when the coefficients in the linear Markov strategies are continuous. To this end, we note that it can be easily verified from the receiver’s first-order condition that his best reply attaches weight \(\hat{u}_{a\theta} + \hat{u}_{aa}[\beta_{t\theta} + \beta_{tt}\chi_t] \) to \(\hat{M} \).

Lemma 3 (Learning ODEs). Suppose \((\beta_1, \beta_3)\) is continuous and \(\delta_t = \hat{u}_{a\theta} + \hat{u}_{aa}[\beta_{t\theta} + \beta_{tt}\chi_t] \). Then (9)–(10) governing \((\gamma, \chi)\) has a unique solution. In this solution, \(0 < \gamma_t \leq \gamma^0 \) and \(0 \leq \chi_t < 1 \) for all \(t \in [0,T] \), with strict inequalities over \((0,T]\) if \(\beta_{a\theta} \neq 0 \).

We are now in a position to state the sender’s best-response problem. By the last part of Lemma 2, the sender’s posterior variance, \(\mathbb{E}_t[(M_t - \hat{M}_t)^2] \), is independent of the strategy

\[^{18}\text{To gain more intuition on the dynamics, note from the drift of (13) that \(L \) moves towards \(M \) on average, i.e., someone who only observes \(X \) must gradually learn the type over time. On the other hand, the drift of \(M \) reflects that the sender expects \(\hat{M} \) to be revised upward only when \(a'_t > \mathbb{E}_t[\alpha_{qL} + \alpha_{2L} \hat{L}_t + \alpha_{3L} \hat{M}_t] \), i.e., when she expects to beat the receiver’s expectation of her own behavior. The volatility terms capture how both states will respond to the future information conveyed by the public signal; if the latter is uninformative (e.g., \(\delta_t / \sigma_X \equiv 0 \)), \(M \) evolves deterministically and \(L \equiv \mu \).}\]
followed, with a value of $\gamma_1 \chi_1$; intuitively, the additive structure in the signals and the Gaussian noise imply that changes in the sender’s actions simply shift the receiver’s belief for any realization of the shocks (Z^X, Z^Y).\footnote{If the public signal is perfectly informative, i.e., $\delta_1 / \sigma_X = +\infty$, we have that $\chi \equiv 0$ and so $\mathbb{E}_t[(M_t - \hat{M}_t)^2] \equiv 0$, confirming that the environment becomes public.} Using this and the definition of M, we have

$$\mathbb{E}_t[u(a_t, \delta_{0t} + \delta_{1t} \hat{M}_t + \delta_{2t} L_t, \theta)] = \mathbb{E}_t[u(a_t, \delta_{0t} + \delta_{1t} M_t + \delta_{2t} L_t, \theta)] + \frac{1}{2} \mathbb{E}_t[\delta_{1t}^2 \gamma_1 \chi_1],$$

and likewise for the terminal payoff ψ in place of u at $t = T$; in other words, no moments of higher order are needed as additional state variables. We conclude that, up to an additive constant in the total payoff, the sender’s best-response problem consists of maximizing

$$\mathbb{E}_0 \left[\int_0^T e^{-r t} u(a_t, \delta_{0t} + \delta_{1t} M_t + \delta_{2t} L_t, \theta) dt + e^{-r T} \psi(\delta_{0T} + \delta_{1T} M_T + \delta_{2T} L_T) \right]$$

subject to the dynamics (12)–(13) of (M, L) and the ODEs (9)–(10) for (γ, χ).\footnote{The sender’s problem is, in practice, one of optimally controlling an unobserved state \hat{M}. We are allowed to filter first and then optimize due to the separation principle. See the proof of Lemma 2.} The set of admissible strategies for this problem is the set of \mathbb{R}-valued square-integrable processes $(a_t)_{t \in [0, T]}$ that are (θ, M, L)-progressively measurable; this set is obviously beyond the linear class and it is richer than that used in the Nash equilibrium concept.

A tuple $(\beta_0, \beta_1, \beta_2, \beta_3)$ of deterministic functions induces a linear Markov equilibrium if $\beta_{0t} + \beta_{1t} M_t + \beta_{2t} L_t + \beta_{3t} \theta$ is an optimal policy for the sender when the coefficients $(\delta_0, \delta_1, \delta_2)$ in the receiver’s strategy are optimal and correct, i.e., when

$$\hat{a}_t := \delta_{0t} + \delta_{1t} \hat{M}_t + \delta_{2t} L_t = \underset{\hat{a}' \in \mathbb{R}}{\arg \max} \mathbb{E}_t[\hat{u}(a_t + \alpha_2 L_t + \alpha_{3t} \theta, \hat{a}', \theta)].$$

This notion of equilibrium is clearly perfect in that it specifies optimal behavior by the sender after deviations. Finally, along the path of play of such a policy, the representation (6) holds by construction, and so the sender’s behavior is given by $a_t = \alpha_0 t + \alpha_2 L_t + \alpha_{3t} \theta$, where $(L_t)_{t \in [0, T]}$ follows (11) in Lemma 1—a Nash equilibrium in linear strategies ensues.\footnote{Regarding the receiver, while deviations by this player do affect L, it is clear that no additional states than (t, L, \hat{M}) are needed after deviations (see (A.1) in the Appendix for the law of motion of \hat{M}). Also, all the payoff-relevant histories are reachable on path, so the sequential rationality requirement is trivial for this player in an LME. All this is true if this player is forward looking.}

In the next section we specialize the model to the two benchmark applications from Section 2. This allows us to illustrate the new economic insights that private monitoring—via the history-inference effect created—brings to the analysis of noisy signaling games. The reader interested in the question of the existence of LME can immediately skip to Section 5, where we address the best-response problem in its general form.
4 Applications

We begin with our coordination game within organizations, which is an ideal pedagogical example for fleshing out the new insights on behavior and outcomes that we uncover. Having developed this application, we offer a more streamlined exposition of our reputation model.

4.1 Coordination: Learning and Performance in Organizations

Recall the coordination game of Section 2: up to positive factors, the players’ payoffs are

\[\text{"leader/team"} : \int_0^T e^{-rt} \left\{ - (a_t - \theta)^2 - (a_t - \hat{a}_t)^2 \right\} dt; \quad \text{"follower"} : - (a_t - \hat{a}_t)^2. \]

That is, the leader aims to take actions adapted to the economic environment (i.e., \(\theta \)) while accounting for the need to coordinate activities; the follower simply wants to coordinate. How does the leader guide actions towards \(\theta \), and what are the implications on learning—captured by the follower’s terminal posterior variance \(\gamma_T \)—and on performance—captured by the leader’s total payoff? Note that, due to the alignment of preferences, if the leader were able to transmit her knowledge about \(\theta \), the organization would incur no losses going forward; a more informed organization is a priori suggestive of better performance.

The public benchmark Suppose that the signal \(Y \) is public or the public signal noiseless, i.e., \(\sigma_X = 0 \): in either case, the follower’s belief \(\hat{M} \) is known to the leader or to someone who only observes the public signal, so the environment is effectively public.\(^{22}\) Mathematically, \(\hat{M} = M = L \) at all times, so there is a single state to track, \(\hat{M} \). How does play unfold?

At time \(T \), the players face a static game given any value of the follower’s terminal belief, \(\hat{M}_T \)—the (Bayes) Nash equilibrium of this one-shot interaction is \(a_T = \frac{1}{2} \theta + \frac{1}{2} \hat{M}_T \), \(\hat{a}_T = \hat{E}_T[a_T] = \hat{M}_T \). For \(t < T \), a linear Markov equilibrium generalizes these strategies to

\[a_t = \beta_0 t + \beta_1 t \hat{M} + \beta_2 t \theta \quad \text{and} \quad \hat{a}_t = \hat{E}_t[a_t] = \beta_0 t + (\beta_1 t + \beta_3 t) \hat{M}_t, \]

where the weights will differ from their static counterparts due to the leader’s dynamic incentives. Equipped with these strategies, the follower’s belief evolves as

\[d\hat{M}_t = \frac{\beta_3 \gamma_t}{\sigma_Y^2} \{ dY_t - [(\beta_0 t + (\beta_1 t + \beta_3 t) \hat{M}_t) dt] \} \quad \text{and} \quad \dot{\gamma}_t = - \left(\frac{\beta_3 \gamma_t}{\sigma_Y} \right)^2, \quad (16) \]

\(^{22}\)When \(\sigma_X = 0 \), this happens if the belief can be inverted from the action observed, which holds here.
i.e., \(\hat{M} \) responds to unanticipated changes in the signal \(Y \), with an intensity that increases with both the strength of the leader’s signaling, \(\beta_3 \), and the degree of uncertainty of the follower, \(\gamma \). The leader’s problem is then to maximize her expected payoff when she controls \(\hat{M} \) (via \(Y \)) as above—we look for a quadratic value function that features an optimal linear policy whose coefficients match those conjectured by the follower in (16).

Proposition 1. When \(\sigma_X = 0 \), an LME exists for all \(T > 0 \) and \(r > 0 \). In any such LME, \(a_t = \left(1 - \beta_{3t} \right) \hat{M}_t + \beta_{3t} \theta \) for some strictly decreasing deterministic function \(\beta_{3t} \) satisfying \(\beta_{3t} \in (1/2, 1) \), \(t \in [0, T) \), and \(\beta_{3T} = 1/2 \).

Under full information, the leader would choose \(a_t = \theta \) at all times—from this perspective, the leader shifts weight from the state of the world toward the follower’s belief because she cares about coordinating with an uninformed agent. The key, however, is that the leader does not lower the weight to the static counterpart of 1/2 on the type, except at the end of the interaction. Indeed, stronger signaling, by generating higher signals on average, enables the leader to steer the follower’s belief—and hence, his actions—towards \(\theta \) faster, thereby allowing her to enjoy future coordination at a lower adaptation cost. In other words, the leader’s revelation motive manifests in gradually investing in the follower’s adaptation.

An important takeaway from Proposition 1 is that such signaling incentives fall over time (\(\beta_3 \) is decreasing) partly due to there being less time to enjoy the future benefits as time progresses.\(^{23}\) In economic terms, a model with public signals yields the prediction that organizations facing new environments would engage in more novel changes in the beginning of their transition: leadership’s actions are more sensitive to its superior information early on, decaying over time as the static coordination motive becomes stronger.

Higher-order uncertainty

The previous finding on the evolution of the leader’s signaling motive is, however, non-generic. In fact, as long as \(Y \) is private, any finite amount of volatility \(\sigma_X \) in the public signal will generate a *non-monotonic* signaling coefficient \(\alpha_3 = \beta_3 + \beta_1 \chi \).

Proposition 2. Suppose that \(r > 0 \) and \(\sigma_X \in (0, \infty) \). In any LME, the coefficients satisfy \(\beta_{0t} = 0 \) and \(\beta_{1t} + \beta_{2t} + \beta_{3t} = 1 \), and \(\alpha_{3t} > 0 \) is non-monotonic and eventually decreasing.\(^{24}\)

Typical signaling coefficients \(\alpha_3 \) are given by the hump-shaped dashed curves in Figure 1; the strictly decreasing signaling coefficient \(\beta_3 \) in the public case is depicted in black.

To rationalize the initial increasing signaling phase, we now move to the polar opposite case of the previous public benchmark: when the public signal is simply pure noise, i.e.,

\(^{23}\)There is a second force in the same direction: as learning progresses, i.e., \(\gamma \) falls, the belief becomes less responsive to changes in \(Y \), so it is more difficult to steer the belief in any direction.

\(^{24}\)Time horizons for which we can guarantee the existence of an LME are presented in the next section.
σ_X = ∞. This no-feedback case offers the cleanest set-up for understanding how the presence of higher-order uncertainty affects outcomes.

As argued in Section 3, the leader will now rely on her second-order belief M_t. And since the public signal is uninformative, the public belief L_t coincides with the prior mean µ at all times. Using that β_0 ≡ 0 in equilibrium, a linear Markov strategy for the leader becomes

\[a_t = \beta_{1t} M_t + \beta_{2t} \mu + \beta_{3t} \theta. \]

Conjecturing a representation \(M_t = \chi_t \theta + (1 - \chi_t) \mu \), the follower expects \(a_t = (\beta_{2t} + \beta_{1t}(1 - \chi_t))\mu + (\beta_{3t} + \beta_{1t} \chi_t) \theta \) in equilibrium. The signaling coefficient \(\alpha_{3t} = \beta_{3t} + \beta_{1t} \chi_t \) is then used by this player to construct \(\hat{M} \). One can then show that the leader’s belief satisfies

\[dM_t = \frac{\alpha_{3t} \gamma_t}{\sigma_Y^2} [a'_t - (\alpha_{2t} + \alpha_{3t} M_t)] dt, \quad \text{with} \quad \dot{\gamma}_t = - \left(\frac{\alpha_{3t}}{\sigma_Y} \right)^2 \quad \text{and} \quad \chi = 1 - \frac{\gamma_t}{\gamma^o}. \]

The controlled dynamic of \(M \) is now deterministic, reflecting that the leader’s sole source of information to forecast \(\hat{M} \) is her actions. This dynamic is again coupled with the follower’s posterior variance, \(\gamma_t \), but the latter’s evolution now depends on the total extent of signaling \(\alpha_{3t} = \beta_{3t} + \beta_{1t} \chi_t \) that accounts for the history-inference effect \(\beta_{1t} \chi_t \). Finally, if the above linear Markov strategy is followed, there is a one-to-one mapping between \(\chi \) and \(\gamma \).

Proposition 3. When \(\sigma_X = +\infty \), an LME exists for all \(T > 0 \) and \(r > 0 \). In any such LME, \(a_t = (1 - \alpha_{3t})\mu + \alpha_{3t} \theta \), where \(\alpha_{3t} \in (1/2, 1) \), \(t \in [0, T] \). Also, \(\alpha_{3t} \) is strictly increasing and \(\alpha_T \nearrow 1 \) as \(T \nearrow \infty \).

The leader’s signaling here exhibits a completely different pattern: the coefficient is strictly increasing, approaching 1 as the length of the interaction grows. To see why, notice that in the public case higher types take higher actions because they have both higher (static)
adaptation motives and higher (dynamic) steering motives, as they must drive their organiza-
tions to higher states of the world. These two forces are present in the no-feedback case, but the history-inference effects is also at play: higher types end up having higher second-
order beliefs, inducing them to take even higher actions due to the desire to coordinate. Moreover, since the coordination motive (β_1) becomes stronger as the end-game approaches, and χ grows due to a stronger reliance on past play for forecasting the continuation game, the history-inference effect strengthens over time, overcoming any fall in β_3.

We can now interpret the robust finding of a non-monotone signaling coefficient in the leader’s strategy. Specifically, the leader starts “small” relative to the public case (the coefficients in Figure 1 cross at $t = 0$, addressed shortly), and the history-inference effect dominates in the beginning: as the leader expects the follower to gradually “get the message,” she implements changes that better reflect the environment—the increasing phase. As time goes by, however, the coordination motive becomes stronger. While in the no-feedback case this further strengthened the history-inference effect, the public signal available can be used to coordinate: weight is shifted from β_1 to β_2 attached to L, thus dampening the history-inference effect and, combined with a decreasing steering incentive, α eventually decreases.

This is a much better story of adaptation to change, in that the leadership does not begin with drastic changes that the organization is unfamiliar with at the outset (the public case). Rather, the leadership slowly familiarizes the organization with the new environment first, and only implements more novel changes—as measured by the sensitivity of the leader’s action to her private information—after more common understanding has been developed.

Outcomes: learning and payoffs Figure 1 suggests that there can be considerably more information transmission in a setting with higher-order uncertainty than if beliefs are public. Will this be the case, and are there any deep connections between learning and performance?

To formalize this conjecture, we contrast the public benchmark only with the no-feedback counterpart, the latter approximated by a large σ_X. Further, we set $r = 0$, a case in which we obtain analytic solutions. The use of superscripts Pub and NF should be clear.

Proposition 4. Suppose that $r = 0$. For all $T > 0$,

(i) The leader’s ex ante payoff is larger in the public case;

(ii) $\beta_{30}^{Pub} > \alpha_{30}^{NF}$ and $\gamma_{T}^{Pub} > \gamma_{T}^{NF}$.

The result says two things. First, the organization is better off in the public case. Second, there is always more information transmission in the no-feedback case. That is, worsening the feedback to a leader leads to more knowledge being transmitted. This latter finding is non-trivial because the signaling coefficients always cross.
Thus, this application uncovers a novel tension between learning and performance: organizations with a better understanding of the economic environment can underperform their lesser informed counterparts. Indeed, at the core of this result is that learning is a measure of miscoordination in that ex ante (undiscounted) coordination costs satisfy

$$E_0 \int_0^T (a_t - \hat{a}_t)^2 dt = \int_0^T \alpha_t^2 E_0 (\theta - \hat{M}_t)^2 dt = \int_0^T -\sigma_t^2 \hat{\gamma}_t dt = \sigma_t^2 \ln(\gamma^o / \gamma_T),$$

which falls in γ_T.\(^{25}\) To grasp some intuition, consider the public case. There, the leader could opt to take the follower’s action in any period, thereby eliminating any miscoordination; but this implies that the leader neglects her private information, and no information is transmitted. It is only when the leadership introduces changes for which the organization does not know how to respond that information then gets transmitted, but this creates miscoordination. A dichotomy between learning and performance arises in that an organization’s better understanding of the economic environment reflects a painful struggle to coordinate.

Our comparison of signaling coefficients is useful for understanding payoffs. Clearly, the direct effect of shutting down the public signal is negative—increased uncertainty makes coordination more difficult. The strategic effect is that, in response to more information being transmitted, the follower’s belief is more volatile in the no-feedback case—but this generates even more miscoordination. Anticipating this extra responsiveness, a patient leader signals less aggressively in the beginning, explaining why the signaling coefficients cross.

4.2 Reputation: Sustaining a Reputation for Neutrality

Recall the reputation game of Section 2: up to positive factors, the players’ payoffs are:

“politician”: $- \int_0^T e^{-rt}(a_t - \theta)^2 dt - e^{-rT} \psi a_T^2$, $\psi > 0$; “media outlet”: $-(\hat{a}_t - \theta)^2$.

The story behind was that the politician/expert has a long-term career concern reflected in the lump-sum terminal payoff $-e^{-rT} \psi a_T^2$: she wants to appears as neutral from the outlet’s perspective at T due to $\hat{a}_t = \hat{M}_t$ at all times and $\mu = 0$ capturing the unbiased type. To get feedback about her reputation, the politician relies on a public reporting process $dX_t = \hat{M}_t dt + \sigma_X dZ^X_t$. Will more accurate reporting—i.e., low σ_X—help the politician?

We can now operate in an expedited fashion relative to the previous application. We begin with a full characterization of the LME that arises in this setting for arbitrary discount rates and precision of the public feedback X, demonstrating the tractability of the setting studied:

\(^{25}\)This expression for undiscounted coordination costs holds for all $r \geq 0$ and all $\sigma_X \in [0, +\infty]$.

23
Proposition 5. Suppose that \(r > 0 \) and \(\sigma_X \in (0, \infty) \). In any LME, the politician’s strategy satisfies \(\beta_{0t} = 0 \) and \(\beta_{1t}, \beta_{2t} \leq 0 < \beta_{3t} \leq 1 \) for all \(t \in [0, T] \), with all inequalities strict over \([0, T) \). Moreover, \(\alpha_{3t} := \beta_{3t} + \beta_{1t} \chi_t \in (0, 1) \), and there exists \(\bar{r} > 0 \) such that for all \(r \in (0, \bar{r}) \), \(\alpha_3 \) has an interior minimum and is initially decreasing (hence non-monotonic).

A politician with a higher bias prefers to take higher actions, all else equal (\(\beta_3 > 0 \)). But to be perceived as neutral, the politician places lower weight on her type than myopically optimal (\(0 < \beta_3 < 1 \)). Further, the more she believes her reputation to be biased (i.e., a large \(|M_t| \)), the more she wants to drive her reputation back to the neutral level \(\mu = 0 \); the weight \(\beta_1 \) on \(M_t \) is negative. And as with traditional signal jamming, the politician gets trapped into taking lower actions in response to public information that her type is high (\(\beta_2 < 0 \)).

What are the signaling implications of this behavior? Recall that in the public benchmark case, the signaling coefficient is given by the equilibrium weight on the type \(\beta_3 \) exclusively: all types would agree on \(\hat{M} \) for a given public history of \(Y \), so \(\beta_1 \) (the weight on \(\hat{M} = M_t = L_t \) in this case) is not linked to information transmission. This is akin to the reaction “everyone would backtrack this way” when seeing a public figure doing some form of damage control—the reaction’s implication that no information is conveyed by the corrective action is inherently linked with there being commonly observed information about the public figure.

With higher-order uncertainty, however, the signaling coefficient is \(\alpha_3 = \beta_3 + \beta_1 \chi \)—in contrast to the coordination game, the history inference effect now has a negative sign, introducing a new force that dampens information transmission. Intuitively, higher types reflect on their higher past actions and expect their reputations to be more biased upward, in turn forcing them to take more drastic corrective actions in a way that reduces separation. From this perspective, the proposition states that there is an intermediate point at which such separation incentives—as measured by the sensitivity of the politician’s actions to her type, \(\alpha_3 \)—are minimized (and this occurs at all contemporaneous public histories due to \(a_t = \alpha_{3t} \theta + \alpha_{2t} L_t \) in equilibrium). This is akin to all politician types acting more moderately as their past actions begin haunting them: an increasing fear of being perceived as biased develops early on due to the history inference effect at play. Further, that moderation is maximized after time 0 (later in the career) despite there being less time to build a reputation.

In this game, the prior is that the politician is unbiased. Thus, if all types tied their hands, or pooled into some action, the outlet’s belief would remain at the prior because no information is conveyed—the long-term goal would be achieved, but this is costly. The negative pressure on separation resulting from the history-inference effect then suggests that the presence of higher-order uncertainty potentially alleviates this form of commitment problem due to less information being transmitted. To explore these conjectures, we again
exploit the analytical solutions for the public and no-feedback cases without discounting.\footnote{It is easy to show that the ex ante expectation of \hat{M}_T^2 is $\gamma^o - \gamma_T$, so less learning implies a smaller terminal loss. Of course, less information transmission is not immediate due to β_3 varying across cases. In the no-feedback case, α is constant for $r = 0$ and decreasing for $r > 0$.}

Proposition 6. Suppose that $r = 0$ and $\psi < \sigma^2 r / \gamma^o$. Then for all $T > 0$, there exists a unique LME for the public case and no-feedback case. In the no-feedback case, the outlet learns less about the politician’s bias, and the politician’s ex ante payoff is higher.

Ignorance can be bliss: the politician can be better off if she does not know her reputation due to imperfect reporting. A sufficient condition for this to happen is that the direct (negative) effect of being unable to tailor her actions to her reputation is not too large, which occurs when the terminal payoff is not too concave (small ψ) or the outlet’s belief is not too responsive (resulting from either low initial uncertainty or a noisy private signal).\footnote{This payoff comparison would hold verbatim if instead the outlet reports on what it observes at any instant (i.e., $dX_t = dY_t + \sigma_X dZ^X_t$), due to the cases $\sigma_X = 0$ or $+\infty$ inducing the same information structures.}

5 The Main Existence Result

In this section, we transform the problem of existence of LME to a boundary value problem (BVP), and we provide time horizons for which such a problem admits a solution.

To this end, we postulate a quadratic value function for the sender

$$ V(\theta, m, \ell, t) = v_0 t + v_1 \theta + v_2 m + v_3 \ell + v_4 \theta^2 + v_5 t m^2 + v_6 t \ell^2 + v_7 \theta m + v_8 \theta \ell + v_9 t m \ell, $$

where v_i, $i = 0, ... , 9$ depend on time only. The Hamilton-Jacobi-Bellman (HJB) equation is

$$ rV = \sup_{a'} \left\{ \tilde{u}(a', E_t[\hat{a}_t], \theta) + V_t + \mu_M(a') V_m + \mu_L V_\ell + \frac{\sigma^2_M}{2} V_{mm} + \sigma_M \sigma_L V_{m\ell} + \frac{\sigma^2_L}{2} V_{\ell\ell} \right\}, \quad (17) $$

where $\tilde{u} := u + \frac{1}{2} u_{\tilde{a}_t} \delta^2 t \gamma_t X_t$, μ_L (respectively, σ_M and σ_L) denote the drifts (respectively, volatilities) in (12) and (13), and \hat{a}_t is determined via (15).

Letting $a(\theta, m, \ell, t)$ denote the maximizer of the right-hand side in the HJB equation, the first-order condition (FOC) reads

$$ \frac{\partial u}{\partial a}(a(\theta, m, \ell, t), \delta_{0t} + \delta_{1t} m + \delta_{2t} \ell, \theta) + \frac{\sigma^2_M}{\gamma_t} \left[\frac{v_2 t + 2 v_5 t m + v_7 \theta + v_9 t \ell}{dM_t/da_t} \right] = 0. \quad (18) $$

Solving for $a(\theta, m, \ell, t)$ in (18), the equilibrium condition becomes $a(\theta, m, \ell, t) = \beta_0 t + \beta_1 m + \beta_2 \ell + \beta_3 \theta$, which is a linear equation. We can then solve for (v_2, v_5, v_7, v_9) directly in...
terms of $\bar{\beta}$ and (γ, χ) (see (C.1)-(C.4)); the associated mapping is well defined provided that α_3 and γ never vanish, which will be the case in equilibrium. Next, we insert the resulting expressions into the HJB equation along with $a(\theta, m, \ell, t) = \beta_{0t} + \beta_1m + \beta_2\ell + \beta_3t\theta$, to obtain a system of ODEs for the $(\beta_0, \beta_1, \beta_2, \beta_3)$ coefficients and remaining value function coefficients. Because the pair (γ, χ) affects the law of motion of (M, L), these ODEs are coupled with (9)–(10). The resulting system of ODEs can be further reduced by eliminating $(v_0, v_1, v_3, v_4, \beta_0)$ which are “downstream” of the remaining variables.

This procedure yields a system of ODEs for $(\beta_1, \beta_2, \beta_3, v_6, v_8, \gamma, \chi)$, to which we need to add boundary conditions. First, γ and χ satisfy exogenous initial conditions $\gamma_0 = \gamma^o > 0$ and $\chi_0 = 0$. Second, there are endogenous terminal values for the remaining variables that are determined by the static (Bayes) Nash equilibrium played at time T. To simplify expressions, we provide these for the case in which there are no terminal payoffs, $\psi \equiv 0$:

$$\beta_{1T} = \frac{u_{a\theta}[u_{a\theta}u_{aa} + u_{a\theta}]}{1 - u_{aa}u_{aa}\chi_T}, \quad \beta_{2T} = \frac{u_{a\theta}^2[u_{a\theta}u_{aa} + u_{a\theta}](1 - \chi_T)}{(1 - u_{aa}u_{aa})(1 - u_{aa}u_{aa}\chi_T)}, \quad \beta_{3T} = u_{a\theta}, \quad v_{6T} = v_{8T} = 0.$$

We now introduce our technical conditions for the existence of LME. First, we require a static equilibrium to exist for all possible histories of play, i.e., for all $\chi_T \in [0, 1]$. This holds as long as $u_{aa}u_{aa} < 1$ in the denominators, which is the basic requirement that myopic best replies in the static game of two-sided incomplete information intersect. Second, we will require $\alpha_3T \propto u_{a\theta} + u_{aa}u_{a\theta}\chi_T$ to never vanish, which is guaranteed by $u_{a\theta}(u_{a\theta} + u_{aa}u_{a\theta}) > 0$ since $\chi_T \in [0, 1)$. This, in turn, will ensure that α_3 never vanishes. (And since since γ never vanishes as long as α_3 is finite, we can recover (v_2, v_5, v_7, v_9) as promised.) These assumptions are for convenience, as they allow us to discard the pathological possibility of a potential history in which the signaling game is ill-posed. We collect them next.

Assumption 2. Flow payoffs satisfy (i) $u_{aa}u_{aa} < 1$ and (ii) $u_{a\theta}(u_{a\theta} + u_{aa}u_{a\theta}) > 0$.

Hence, we have reduced the task of finding an LME to solving a boundary value problem (BVP) for $(\beta_1, \beta_2, \beta_3, v_6, v_8, \gamma, \chi)$. The ODEs for this boundary value problem, after a change of variables that facilitates our analysis that follows, are displayed in Appendix C.

Establishing the existence of a solution to the BVP is nontrivial because there are multiple ODEs in both directions: $(\bar{\beta}, v_6, v_8)$ is traced backward from its terminal values, while (γ, χ) is traced forward using its initial values. In BVPs where only one variable has an initial condition and the remaining variables have terminal conditions, a traditional approach is a one-dimensional shooting argument: guess the terminal value of the remaining variable, trace all variables backward, and argue via the intermediate value theorem that there is some guess for which the target (i.e., the exogenous initial condition) is hit. In our problem,
however, two variables have initial conditions, so we must develop a new approach. Our approach is motivated by the observation that the problem of equilibrium existence is fundamentally a fixed-point problem: the evolution of the learning coefficients \((\gamma, \chi)\) depends on the signaling that takes place during the game, but the latter depends on the path of the learning coefficients because these are taken as given in the best response problem. Therefore, we translate our BVP into a fixed point equation in the space of functions \((\gamma, \chi)\).

Our fixed point argument works broadly as follows. First, we choose an arbitrary pair \(\lambda = (\gamma, \chi)\) in a suitable domain \(\Lambda\); this domain nests all pairs \((\gamma, \chi)\) that can be obtained as solutions to their coupled ODEs (9)–(10) for continuous \((\beta_1, \beta_3)\) satisfying a particular uniform bound. Taking \(\lambda\) as an input, we “shoot back”: we pose an initial value problem for the coefficients in the strategy consisting of their ODEs (which depend on \(\lambda\)) in time-reversed form and, for initial conditions, the endogenous time-\(T\) conditions (which depend on \(\lambda_T\)). We then derive a sufficient condition on the time horizon such that: this initial value problem has a (unique) solution for all \(\lambda\) in the domain; the solution satisfies the uniform bound referred to above; and the solution is continuous in \(\lambda\). We then “shoot forward:” we feed the resulting \((\beta_1, \beta_3)\) into the ODEs for \((\gamma, \chi)\) to get an “output” pair denoted \(\lambda\). We show that the mapping from input pairs \(\lambda\) to \(\lambda\) is continuous, and \(\lambda\) lies in \(\Lambda\); we then apply Schauder’s infinite dimensional fixed-point theorem. By construction, the fixed point and the remaining variables obtained from the procedure constitute a solution to the BVP.

Theorem 1. Suppose Assumptions 1 and 2 hold. If \(\psi\) is linear, or if \(\psi\) is concave but has limited curvature (depending on parameters), there exists a strictly positive time \(T(\gamma^o) \in \Omega(1/\gamma^o)\) such that for all \(r \geq 0\) there exists an LME with non-trivial signaling at all times.

The theorem states that existence is guaranteed when the curvature of the terminal payoff and time horizon are not too large, or when there is not too much initial uncertainty, for times that hold irrespective of the discount rate. (We note that if \(\psi\) is linear—which nests the case of no terminal payoffs, \(\psi \equiv 0\)—there are no additional restrictions on its slope.)

This is a powerful and insightful result. First, the presence of terminal payoff makes the static Nash equilibrium arising at \(T\) more complex due to “last minute” incentives; the curvature condition then allows us to extract a sufficiently regular selection of static equilibria for all possible \((\chi_T, \gamma_T)\) over \([0, 1] \times [0, \gamma^o]\), which we need for our fixed-point argument. Second, as the initial uncertainty \(\gamma^o\) increases, beliefs are naturally more responsive to new information, and hence there is more scope for manipulating beliefs; mathematically, the ODEs for the equilibrium coefficients are proportional to \(\gamma\), so the uniform bounds for the associated solutions become tighter.

\(^{28}\)Exceptions for which the one-dimensional shooting is applicable are discussed in Section 6.
Finally, a natural question is, why this two-stage shooting method? First, it is only when the ODEs for the equilibrium coefficients are traced backward that greater discounting limits their growth; we exploit this to find times for existence that apply for all \(r \geq 0 \). Second, the learning ODEs always admit solutions (for continuous coefficients \((\beta_1, \beta_3)\)) if traced forward. Thus, the approach fully exploits the properties of the system in each direction. However, all our steps can be refined: to include more general terminal payoffs; to obtain better uniform bounds (we only use the degree of the polynomials involved); and to exploit that higher \(r \) makes behavior closer to myopic, which is well defined for all \(T \).

6 Discussion and Concluding Remarks

Receiver’s Myopia
Allowing for a forward-looking receiver has minimal impact on our analysis. First, no additional states beyond \((t, \hat{M}, L)\) are necessary to construct LMEs. Second, the same equilibrium found in each application would arise in a non-myopic case. Consider our reputation example and suppose the outlet deviates from \(\hat{a}_t = \hat{M}_t \), incurring a cost today. While the public signal is affected, the coefficient \(\alpha_3 \) is unchanged (it is deterministic and the deviation hidden), so the future informativeness of signals is unaffected. Thus, there is no future benefit. And in the coordination game, any change in the leader’s action would be offset in the next period due to the coordination motive. More generally, this logic holds for prediction problems of the form \(-\frac{1}{2}(c_0 + c_1 \theta + c_2 a_t - \hat{a}_t)^2\).

Of course, there are settings beyond this class in which non-trivial dynamic incentives for the receiver can arise. We note two things. First, because these incentives involve affecting a public signal, they are well understood (e.g., signal jamming). Second, our methods are still equipped to handle the question of existence of LME these cases: the difference is that the new BVP has to be enlarged to include ODEs for the coefficients \((\delta_0, \delta_1, \delta_2)\) in the receiver’s strategy. But our fixed point method can handle any number of ODEs in any direction.

Private Value Environments
As argued, the presence of two learning dynamics \(\gamma \) and \(\chi \) severely complicates the question of finding a solution to the final BVP. Economically, this is the reflection of the players potentially signaling at very different rates, so it is natural to examine environments with some symmetry. We say that an environment is of *private*

In earlier version, we used Brouwer’s finite-dimensional fixed-point theorem over the boundary values.

To exploit discounting in our proof, we perform two further modifications to the BVP before applying our fixed point argument. For expositional ease, we defer a detailed explanation of those modifications and the underlying motivation to the proof in Appendix C (see ‘Centering’ and ‘Auxiliary Variable’ steps).

Formally, it suffices to show that the myopic coefficients in our analysis solve the ODEs that govern the dynamic versions of such coefficients when the receiver is forward looking. See `spm.nb` in our websites.
values if \(\hat{u}_{ab} = 0 \), i.e., the receiver strategically cares about the sender’s action only. The players then signal at proportional rates (\(\delta_1 = \hat{u}_{aa}\alpha_3 \)) due to the receiver’s best-response \(\hat{a}_t \) being an affine function of \(\hat{E}[a_t] \). The environment is, therefore, strategically symmetric.

In this case, our online appendix shows that there is a one-to-one mapping between \(\gamma \) and \(\chi \) of the form \(\chi_t = \frac{c_1\gamma_t(1-[\gamma_t/\gamma_0]^d)}{c_1+c_2[\gamma_t/\gamma_0]^d} \in [0,1) \) for some positive constants \(c_1, c_2 \) and \(d \). Using this relationship, the shooting argument becomes one-dimensional going backwards, and the previously discussed continuity arguments apply. Importantly, the horizons for which one can guarantee existence of LME in our general theorem are of the same order as in this simpler case. The reason is that the horizons found are pinned down, in both settings, by uniformly bounding the ODEs associated with the equilibrium coefficients exclusively (i.e., the dependence of the learning ODEs is only implicit). Consequently, our method is the appropriate multidimensional extension of the one-dimensional shooting case.

Further applications of the fixed-point argument Our fixed-point technique for the existence of LME can be applied to settings where asymmetries are key, even if private monitoring is absent. For instance, asymmetric games of multisided incomplete information with public signals exclusively, such as dynamic oligopolies where firms’ costs are drawn from different distributions. Similarly, it can be applied to reputation models—i.e., one-sided signaling—with multidimensional types. Or it can be even extended to situations in which several players affect a commonly observed signal, such as in trading models.\(^{32}\)

Other signal structures Our mixed public-private information structure is useful in that it allows us to close the state space at the level of a second-order belief. Variations allowing for stochastic types, or even private signals for all players will certainly require more states, and whether an infinite regress problem is at play remains to be determined—we leave exploration of such models for future work.

Linear-quadratic-Gaussian models are a workhorse class in many areas within economics due to their clean insights. While their advantages are well-known in static settings, it is far less obvious what to expect from them in dynamic settings involving rich information structures that allow for learning, signaling and strategic behavior. From this perspective, our paper has uncovered a complex, yet still tractable, class of games through which we can analyze a whole new set of questions related to strategic information transmission through actions. It is our belief that the stylized nature of these games is an asset for uncovering economic insights that are robust to other, more nonlinear, settings.

\(^{32}\)For example, multiple learning variables arise due to a nested information structure in the trading model with two traders of Foster and Viswanathan (1994), who confront the problem numerically.
Appendix A: Proofs for Section 3

Preliminary results. We state standard results on ODEs (Teschl, 2012) which we use in the proofs that follow. Let \(f(t, x) \) be continuous from \([0, T] \times \mathbb{R}^n\) to \(\mathbb{R}^n\), where \(T > 0 \).

- Peano’s Theorem (Theorem 2.19, p. 56): There exists \(T' \in (0, T) \), such that there is at least one solution to the IVP \(\dot{x} = f(t, x) \), \(x(0) = x_0 \) over \(t \in [0, T') \).

If, moreover, \(f \) is locally Lipschitz continuous in \(x \), uniformly in \(t \), then:

- Picard-Lindelöf Theorem (Theorem 2.2, p. 38): For \((t_0, x_0) \in [0, T) \times \mathbb{R}^n\), there is an open interval \(I \) over which the IVP \(\dot{x} = f(t, x) \), \(x(t_0) = x_0 \) admits a unique solution.

- Comparison theorem (Theorem 1.3, p. 27): If \(x(\cdot), y(\cdot) \) are differentiable, \(x(t_0) \leq y(t_0) \) for some \(t_0 \in [0, T) \), and \(\dot{x}_t - f(t, x(t)) \leq \dot{y}_t - f(t, y(t)) \) \(\forall t \in [t_0, T) \), then \(x(t) \leq y(t) \) \(\forall t \in [t_0, T) \). If, moreover, \(x(t) < y(t) \) for some \(t \in [t_0, T) \), then \(x(s) < y(s) \) \(\forall s \in [t, T) \).

In what follows, and in the Online Appendix, we often abbreviate \(\alpha_{3t} \) to \(\alpha_t \).

Proof of Lemma 1. Let \(L \) in (6) denote a process that is measurable with respect to \(X \). Inserting (6) into (4) yields \(a_t = \alpha_{0t} + \alpha_{2t} L_t + \alpha_{3t} \theta \) which the receiver thinks drives \(Y \), where \(\alpha_{0t} = \beta_{0t}, \alpha_{2t} = \beta_{2t} + \beta_{1t}(1 - \chi_t) \), and \(\alpha_{3t} = \beta_{3t} + \beta_{1t} \chi_t \).

The receiver’s filtering problem is then conditionally Gaussian. Specifically, define

\[
\begin{align*}
\dot{Y}_t & := Y_t - (\alpha_{0t} + \alpha_{2t} L_t)dt + \sigma_Y dZ_t^Y,
\end{align*}
\]

which are in the receiver’s information set, and where the last equalities hold from his perspective. By Theorems 12.6 and 12.7 in Liptser and Shiryaev (1977), his posterior belief is Gaussian with mean \(\hat{M}_t \) and variance \(\gamma_{1t} \) (simply \(\gamma_t \) in the main body) that evolve as

\[
\begin{align*}
\dot{M}_t & = \frac{\alpha_{3t} \gamma_{1t}}{\sigma_Y^2} [\dot{Y}_t - \alpha_{3t} \hat{M}_t dt] \quad \text{and} \quad \gamma_{1t} = -\frac{\gamma_{1t}^2 \alpha_{3t}^2}{\sigma_Y^2}.
\end{align*}
\]

(These expressions still hold after deviations, which go undetected.)

The sender can affect \(\hat{M}_t \) via her choice of actions. Indeed, using that \(\dot{Y}_t = (a_t - \alpha_{0t} - \alpha_{2t} L_t)dt + \sigma_Y dZ_t^Y \) from her standpoint,

\[
\begin{align*}
\dot{M}_t & = (\kappa_{0t} + \kappa_{1t} a_t + \kappa_{2t} \hat{M}_t)dt + B_t^Y dZ_t^Y, \quad \text{where} \quad \kappa_{1t} = \alpha_{3t} \gamma_{1t}/\sigma_Y^2, \quad \kappa_{0t} = -\kappa_{1t} [\alpha_{0t} + \alpha_{2t} L_t], \quad \kappa_{2t} = -\alpha_{3t} \kappa_{1t}, \quad B_t^Y = \alpha_{3t} \gamma_{1t}/\sigma_Y.
\end{align*}
\]

On the other hand, since the sender always thinks that the receiver is on path, the public signal evolves, from her perspective, as \(dX_t = (\delta_{0t} + \delta_{1t} \hat{M}_t dt + \delta_{2t} L_t)dt + \sigma_X dZ_t^X \). Because the dynamics of \(\hat{M} \) and \(X \) have drifts that are affine in \(\hat{M} \)—with intercepts and slopes that are in
the sender’s information set—and deterministic volatilities, the pair \((\hat{M}, X)\) is conditionally Gaussian. Thus, by the filtering equations in Theorem 12.7 in Liptser and Shiryaev (1977), \(M_t := \mathbb{E}_t[\hat{M}_t]\) and \(\gamma_{2t} := \mathbb{E}_t[(M_t - \hat{M}_t)^2]\) satisfy

\[
\begin{align*}
 dM_t &= \left(\kappa_{0t} + \kappa_{1t} a_t + \kappa_{2t} M_t\right) dt + \frac{\gamma_{2t} \delta_{1t}}{\sigma_X^2} [dX_t - (\delta_{0t} + \delta_{1t} M_t + \delta_{2t} L_t) dt] \quad (A.4) \\
 \dot{\gamma}_{2t} &= 2 \kappa_{2t} \gamma_{2t} + (B_t^Y)^2 - (\gamma_{2t} \delta_{1t}/\sigma_X^2)^2, \quad (A.5)
\end{align*}
\]

with \(dZ_t := [dX_t - (\delta_{0t} + \delta_{1t} M_t + \delta_{2t} L_t) dt]/\sigma_X\) is a Brownian motion from the sender’s standpoint.\(^{33}\) Observe that since \((A.4)\) is linear, one can solve for \(M_t\) as an explicit function of past actions \((a_s)_{s<t}\) and past realizations of the public history \((X_s)_{s<t}\).

Inserting \(a_t = \beta_0t + \beta_{1t} M_t + \beta_{2t} L_t + \beta_{3t} \theta\) in \((A.4)\) and collecting terms yields \(dM_t = [\dot{\kappa}_{0t} + \dot{\kappa}_{1t} M_t + \dot{\kappa}_{2t} \dot{L}_t + \dot{\kappa}_{3t} \theta] dt + \hat{B}_t dX_t\), where, (i) \(\dot{\kappa}_{0t} = -\alpha_{3t}^2 \gamma_{1t} a_t/\sigma_Y^2 + \alpha_{3t} \gamma_{1t} \beta_{0t}/\sigma_Y^2 - \delta_{0t} \gamma_{2t} \delta_{1t}/\sigma_X^2\), (ii) \(\dot{\kappa}_{1t} = \alpha_{3t} \gamma_{1t} \beta_{1t}/\sigma_Y^2 - \alpha_{2t} \gamma_{1t}/\sigma_Y^2 - \delta_{1t} \gamma_{2t} \delta_{1t}/\sigma_X^2\), (iii) \(\dot{\kappa}_{2t} = -\alpha_{3t} \gamma_{1t} \alpha_{2t}/\sigma_Y^2 + \alpha_{3t} \gamma_{1t} \beta_{2t}/\sigma_Y^2 - \delta_{2t} \gamma_{2t} \delta_{1t}/\sigma_X^2\), (iv) \(\dot{\kappa}_{3t} = \frac{\alpha_{3t} \gamma_{1t}}{\sigma_Y^2} \beta_{3t}\) and (v) \(\dot{\hat{B}}_t = \frac{\gamma_{2t} \delta_{1t}}{\sigma_X^2}\).

Let \(R(t, s) = \exp(\int_s^t \hat{\kappa}_1 du)\). Since \(M_0 = \mu\), we have \(M_t = R(t, 0) \mu + \theta \int_0^t R(t, s) \hat{\kappa}_{3s} ds + \int_0^t R(t, s) [\hat{\kappa}_{0s} + \hat{\kappa}_{2s} L_s] ds + \int_0^t R(t, s) \hat{\kappa}_{3s} dX_s\). Imposing \((6)\) yields the equations \(\chi_t = \int_0^t R(t, s) \hat{\kappa}_{3s} ds\) and \(L_t = [R(t, 0) \mu + \int_0^t R(t, s) [\hat{\kappa}_{0s} + \hat{\kappa}_{2s} L_s] ds + \int_0^t R(t, s) \hat{\kappa}_{3s} dX_s]/[1 - \chi_t]\). The validity of the construction boils down to finding a solution to the previously stated equation for \(\chi\) that takes values in \([0, 1]\). Indeed, when this is the case, it is easy to see that

\[
 dL_t = \{L_t [\dot{\kappa}_{1t} + \dot{\kappa}_{2t} + \dot{\kappa}_{3t}] dt + \dot{\kappa}_{0t} dt + \hat{B}_t dX_t\}/(1 - \chi_t), \quad (A.6)
\]

from which it is easy to conclude that \(L\) is a (linear) function of \(X\) as conjectured.

We will find a solution to the \(\chi\)-equation that is \(C^1\) with values in \([0, 1]\). Differentiating \(\chi_t = \int_0^t R(t, s) \hat{\kappa}_{3s} ds\) then yields an ODE for \(\chi\) as below that is coupled with \(\gamma_1\) and \(\gamma_2\):

\[
\begin{align*}
 \dot{\gamma}_{1t} &= -\gamma_{1t}^2 (\beta_{3t} + \beta_{1t} \chi_t)^2 / \sigma_Y^2 \\
 \dot{\gamma}_{2t} &= -2 \gamma_{2t} \gamma_{1t} (\beta_{3t} + \beta_{1t} \chi_t)^2 / \sigma_Y^2 + \gamma_{1t}^2 (\beta_{3t} + \beta_{1t} \chi_t)^2 / \sigma_Y^2 - (\gamma_{2t} \delta_{1t})^2 / \sigma_X^2 \\
 \dot{\chi}_t &= \gamma_{1t} (\beta_{3t} + \beta_{1t} \chi_t)^2 (1 - \chi_t) / \sigma_Y^2 - (\delta_{1t} \chi_t) (\gamma_{2t} \delta_{1t}) / \sigma_X^2.
\end{align*}
\]

In the proof of Lemma 3 we establish that \(\chi = \gamma_{2t}/\gamma_1 \in [0, 1]\) taking the system above as a primitive. Setting \(\gamma_2 = \chi \gamma_1\) in the third ODE, and writing \(\gamma\) for \(\gamma_1\), the first and

\(^{33}\)Theorem 12.7 in Liptser and Shiryaev (1977) is stated for actions that depend on \((\theta, X)\) exclusively, but it also applies to those that condition on past play (i.e., on \(M\)). Indeed, from \((A.2)\), \(M_t = \hat{M}_t + A_t\) where \(\hat{M}_t = \hat{M}_t [\gamma^Y_i]_{s < t}\) and \(A_t = \int_0^t e^{\int_0^s \kappa_{2s} du} \kappa_{1s} a_s ds\). Applying the theorem to \((\hat{M}_t, X_t)_{t \in [0, T]}\), yields a posterior mean \(\hat{M}_t\) and variance \(\gamma_{2t}\) for \(\hat{M}\) such that \(M^t + A_t = M_t\) as in \((A.4)\) and \(\gamma_{2t} = \gamma_{2t}^1\).
third ODEs become (9)–(10). Using (i)–(v) that define \(\kappa, \hat{B} \) yields that (A.6) becomes
\[
dL_t = (\ell_{0t} + \ell_{1t} L_t) dt + B_t dX_t
\]
where
\[
(l_{0t}, l_{1t}, B_t) = \left[\sigma_X^2 (1 - \chi_t) \right]^{-1} \times (-\gamma_t \chi_t \delta_{0t} \delta_{1t}, -\gamma_t \chi_t \delta_{1t} (\delta_{1t} + \delta_{2t}), \gamma_t \chi_t \delta_{1t}).
\]
That \(L_t \) coincides with \(\mathbb{E}[\theta | \mathcal{F}_t^\gamma] \) is proved in the Online Appendix.

Proof of Lemma 2. Using (A.3), (A.4) becomes
\[
M_t = \frac{\gamma M_t}{\sigma_Y} (a_t - [\alpha_{0t} + \alpha_{2t} L_t + \alpha_{3t} M_t]) dt + \frac{\chi \gamma \delta_{1t}}{\sigma_X^2} dZ_t
\]
where
\[
dZ_t := [dX_t - (\delta_{0t} + \delta_{1t} M_t + \delta_{2t} L_t) dt] / \sigma_X
\]
a Brownian motion from the sender’s standpoint. As for the law of motion of \(L \), this one follows from (11) using (A.7) and that
\[
X_t = (\delta_{0t} + \delta_{2t} L_t + \delta_{1t} M_t) dt + \sigma_X dZ_t
\]
from the sender’s perspective.

We conclude with three observations. First, from (A.2) and (A.4), \(\hat{M}_t - M_t \) is independent of the strategy followed, and hence so is \(Z_t \) due to \(\sigma_X dZ_t = \delta_{1t} (\hat{M}_t - M_t) dt + \sigma_X dZ_t \) under the true data-generating process. This strategic independence enables us to fix an exogenous Brownian motion \(Z \) and then solve the best-response problem with \(Z \) in the laws of motion of \(M \) and \(L \)—i.e., the so-called *separation principle* for control problems with unobserved states applies (see, for instance, Liptser and Shiryaev, 1977, Chapter 16).

Second, it is clear from (14), (A.4)–(A.5), and the proof of Lemma 3 that no additional state variables are needed due to \(\gamma_{2t} := \mathbb{E}_t [(M_t - \hat{M}_t)^2] = \chi_t \gamma_t \) holding irrespective of the strategy chosen. Third, the set of admissible strategies for the best-response problem then consists of all square-integrable processes that are progressively measurable with respect to \((\theta, M, L) \). This set is clearly the appropriate set, and richer than that in Definition 1.

Proof of Lemma 3. Consider the system in \((\gamma_1, \gamma_2, \chi) \) from the proof of Lemma 1, and let \(\delta_{1t} := \hat{u}_{\theta t} + \hat{u}_{\theta t} a_3 \).\(^{34}\) The local existence of a solution follows from Peano’s Theorem. Suppose that the maximal interval of existence is \([0, \bar{T}] \), with \(\bar{T} \leq T \). Since the system is locally Lipschitz continuous in \((\gamma_1, \gamma_2, \chi) \) uniformly in \(t \in [0, T] \), its solution over \([0, \bar{T}] \) is unique (Picard-Lindelöf). Applying the comparison theorem to the pairs \(\{\gamma_1, 0\} \) and \(\{\gamma_1, \gamma_o\} \), we get \(\gamma_{1t} \in (0, \gamma_o) \) over \([0, \bar{T}] \). Hence, \(\gamma_2 / \gamma_1 \) is well-defined, and since it solves the \(\chi \)-ODE, \(\chi = \gamma_2 / \gamma_1 \) by uniqueness. Replacing \(\gamma_2 = \chi \gamma_1 \) in the \(\chi \)-ODE then yields (10). A second application of the comparison theorem to \(\{\chi, 0\} \) and \(\{\chi, 1\} \) then implies \(\chi \in [0, 1) \), and in turn \(\gamma_2 = \chi \gamma_1 \in [0, \gamma_o) \), over \([0, \bar{T}] \). Since the solution is bounded, if \(\bar{T} < T \), it can be extended to \(\bar{T} \) by the continuity of the RHS of the system; and then subsequently extended beyond \(\bar{T} \) by Peano’s theorem, a contradiction. But if \(\bar{T} = T \), it can be extended to \(T \)—the first part of the lemma holds. If \(\beta_{30} \neq 0 \), then \(\dot{\gamma}_{10} < 0 \) and \(\dot{\chi}_0 > 0 \), so by continuity of \(\dot{\gamma}_1 \) and \(\dot{\chi}_1 \), there exists \(\epsilon > 0 \) such that \(\gamma_{1t} < \gamma_o \) and \(\chi_t > 0 \) for all \(t \in (0, \epsilon) \), and by the comparison

\(^{34}\) All the results in this proof extend to \(\delta_1 \) being a generic continuous function over \([0, T] \), the latter case arising when the receiver becomes forward looking.
Appendix B: Proofs for Section 4

In this section, we highlight the main steps for proving Proposition 1; the no feedback case and the corner cases of the reputation game follow similar steps. We also prove Proposition 2. All other results and assertions made in Section 4 are proved in the online appendix.

Proof of Proposition 1. We aim to characterize an LME in which the leader backs out the follower’s belief from his action at all times, with strategies of the form \(a_t = \beta_{0t} + \beta_{1t} \hat{M}_t + \beta_{3t} \theta \) and \(\dot{a}_t = \hat{\Delta}_t[a_t] = \beta_{0t} + (\beta_{1t} + \beta_{3t}) \hat{M}_t \), where \(\beta_{1t} + \beta_{3t} \neq 0 \), \(t \in [0, T] \). Let \(V : \mathbb{R}^2 \times [0, T] \to \mathbb{R} \) denote the leader’s value function. Given the law of motion for \(\hat{M}_t \), the strategy coefficients are pinned down by their terminal values. As in the proof of Theorem 1, by the Picard-Lindelöf theorem applied to the time-reversed ODEs, the strategy coefficients are pinned down by their terminal values.

The existence of an LME thus reduces to the BVP defined by \(\dot{\beta}_{0t} = \gamma_0 \), \(\dot{\beta}_{1t} = \gamma_1 \), \(\dot{\beta}_{3t} = \gamma_3 \) with \(\gamma_0, \gamma_1, \gamma_3 \) such that these strict inequalities hold up to time \(T \).

Inserting \(a^* \) into the HJB equation, and using the previous expressions for \((v_{2t}, v_{4t}, v_{5t}) \) to replace \((v_{2t}, v_{4t}, v_{5t}, \dot{v}_{2t}, \dot{v}_{4t}, \dot{v}_{5t}) \), yields an equation in \(\tilde{\beta} := (\beta_0, \beta_1, \beta_3) \) and \(\tilde{\beta} \). Grouping by coefficients \((\theta, m, \theta^2, \ldots, \text{etc.}) \) in the latter yields the ODEs

\[
\begin{align*}
(\dot{\beta}_{0t}, \dot{\beta}_{1t}, \dot{\beta}_{3t}) &= \left(2r\beta_{0t}\beta_{3t}, \beta_{3t} \left[r(2\beta_{1t} - 1) + \frac{\beta_{1t} \beta_{3t} \gamma_0}{\sigma_Y^2} \right], \beta_{3t} \left[r(2\beta_{3t} - 1) - \frac{\beta_{1t} \beta_{3t} \gamma_3}{\sigma_Y^2} \right] \right). \tag{B.1}
\end{align*}
\]

The existence of an LME thus reduces to the BVP defined by \(\dot{\gamma}_t = -\gamma^2_t \beta_{3t}^2 / \sigma_Y^2 \) and (B.1), with \(\gamma_0 = \gamma^0 \) and \((\beta_{0T}, \beta_{1T}, \beta_{3T}) = (0, 1/2, 1/2) \). Solving this BVP delivers the remaining \(v_i \), as their ODEs are uncoupled and linear in themselves (see Online Appendix).

To show existence, we transform this BVP into a backward IVP by reversing time and using a parametrized initial value for \(\gamma \). We then show that by the intermediate value theorem, there is \(\gamma^F > 0 \) such that \(\gamma^F = \gamma^0 \) in the backward system while all the other ODEs admit solutions. As in Bonatti et al. (2017), it suffices to show that the solutions are uniformly bounded when \(\gamma_t \in [0, \gamma^0] \) for \(t \in [0, T] \). Using the comparison theorem, we show that \(\beta_0, \beta_1, \beta_3 \in [0, 1] \) as long as \(\gamma \) does not explode, so there exists a solution to the BVP, and hence an LME. The remaining arguments are carried out in the online appendix.

Proof of Proposition 2. As in the proof of Theorem 1, by the Picard-Lindelöf theorem applied to the time-reversed ODEs, the strategy coefficients are pinned down by their terminal values.
values. It is straightforward to check that \((\beta_0, v_1, v_3) = (0, 0, 0)\), \(v_6 = \sigma_v^2[-1 + 2\beta_1(1 - \chi) + \alpha_3]/(4\alpha_3\gamma) - v_8/2\) and \(\beta_2 = 1 - \beta_1 - \beta_3\) satisfy their respective ODEs and terminal conditions in any LME, so by uniqueness, we have \(\beta_0 = 0\) and \(\beta_1 + \beta_2 + \beta_3 = 1\).

Non-monotonicity: Note that \(\alpha_T = \frac{1}{2 - \chi_T} > 0\), \(\beta_{1T} = \frac{1}{2(2 - \chi_T)}\), and \(v_{8T} = 0\). The \(\alpha\)-ODE is

\[
\begin{align*}
\dot{\alpha}_t &= r\alpha_t[\alpha_t(2 - \chi_t) - 1] - 2\alpha_t^3 \gamma_t \chi_t \{\sigma_{Y}^2 \chi_t [1 - \alpha_t - \beta_{1t}(1 - \chi_t)] + \alpha_t \gamma_t v_{8t}\} / (\sigma_X^2 \sigma_Y^2 (1 - \chi_t)).
\end{align*}
\]

Applying the comparison theorem to \(\alpha\) (backward), we have \(\alpha > 0\) and thus \(\beta_{30} = \alpha_0 > 0\). Using the strict inequalities in Lemma 3, \(\hat{\alpha}_T = -\frac{2\sigma_Y^2 \gamma_T \chi_T}{\sigma_X^2 \sigma_Y^2 (1 - \chi_T)} \{\sigma_Y^2 \chi_T \frac{1 - \chi_T}{2(2 - \chi_T)}\} < 0\) (i.e. \(\alpha\) is eventually decreasing) and \(\alpha_T > 1/2\). Now at \(t = 0\), we have \(\chi_0 = 0\) and thus \(\hat{\alpha}_0 = r\alpha_0(2\alpha_0 - 1)\); it follows that \(\hat{\alpha}_0 > 0\) iff \(\alpha_0 > \frac{1}{2}\). Consider two cases: (i) \(\alpha_0 > \frac{1}{2}\) and (ii) \(\alpha_0 \leq \frac{1}{2}\). In case (i), we have \(\hat{\alpha}_0 > 0\). In case (ii), we have \(\alpha_T > \frac{1}{2} \geq \alpha_0\), so by the mean value theorem, \(\dot{\alpha}_t > 0\) for some \(t \in (0, T)\). In either case, since \(\dot{\alpha}_T < 0\), \(\alpha\) is non-monotonic. □

Appendix C: Proofs for Section 5

Overview of approach Our overall proof strategy consists of reducing the HJB equation (17) subject to the equilibrium condition (18) to a suitable boundary value problem that we then solve using a fixed-point argument. The BVP will contain ODEs linked to behavior—hence, involving terminal conditions—and also the learning ODEs for \((\gamma, \chi)\) that have initial conditions. The fixed point will be over pairs of functions \((\gamma, \chi)\): a pair \((\gamma^*, \chi^*)\) that generates mutual best responses that in turn induce learning ODEs whose solution is \((\gamma^*, \chi^*)\).

This overarching goal requires several intermediate steps, which we label core subsystem, centering, auxiliary variable, fixed point and verification; we provide brief explanations of these when they arise. Throughout the proof, we refer to the myopic equilibrium coefficients

\[
(\beta_{0t}, \beta_{1t}, \beta_{2t}, \beta_{3t}) = \left(\frac{u_0 + u_{a\bar{a}} \hat{u}_0}{1 - u_{a\bar{a}} \hat{u}_{a\bar{a}}}, \frac{u_{a\bar{a}} (u_{a\theta} \hat{u}_{a\bar{a}} + \hat{u}_{\bar{a}\theta})}{1 - u_{a\bar{a}} \hat{u}_{a\bar{a}} \chi_t}, \frac{u_{a\bar{a}}^2 \hat{u}_{a\bar{a}} (u_{a\theta} \hat{u}_{a\bar{a}} + \hat{u}_{\bar{a}\theta}) (1 - \chi_t)}{(1 - u_{a\bar{a}} \hat{u}_{a\bar{a}}) (1 - u_{a\bar{a}} \hat{u}_{a\bar{a}} \chi_t)}, u_{a\theta}\right),
\]

which correspond to the sender’s strategy in the unique linear Bayes Nash equilibrium involving states \((\theta, M, \hat{M}, L)\) of the static game with flow utilities \((u, \hat{u})\) if the receiver believes \(M_t = \chi_t \theta + (1 - \chi_t) L_t\). By Assumption 2, \((\beta_{0t}, \beta_{1t}, \beta_{2t}, \beta_{3t})\) is well defined and \(\alpha_{t}^m := \beta_{1t}^m \chi_t + \beta_{3t}^m \neq 0\) for all \(\chi_t \in [0, 1]\). Henceforth, given \(\chi_t\), we write \(\beta_{it}^m\) and \(\alpha_{t}^m\) to refer to these functions of \(\chi_t\), suppressing the dependence on \(\chi_t\), and we abbreviate \(\alpha_3^m\) to \(\alpha\).

Core subsystem: We show that the problem of existence of LME reduces to a core subsystem in \((\gamma, \chi, \bar{\beta}, v_6, v_8)\), where \(\bar{\beta} := (\beta_1, \beta_2, \beta_3)\), and perform a change of variables for \((\beta_2, v_6, v_8)\); we denote the new system by \((\gamma, \chi, \beta_1, \bar{\beta}, \bar{v}_6, \bar{v}_8)\).
The first thing to note is that \(\alpha_t := \beta_1 t + \beta_3 t \neq 0 \) for all \(t \in [0, T] \) in any LME. Indeed, if \(\alpha_t = 0 \), it is then easy to verify from the HJB equation that \(\beta_{it} = \beta_{it}^m \) for \(i \in \{0, 1, 2, 3\} \): since the sender’s actions transmit no information, both players must be using myopic best responses. But this implies that \(\alpha_t = \alpha_t^m \neq 0 \) in such an LME, a contradiction. Second, since the coefficients \((\beta_0, \beta_1, \beta_2, \beta_3) \) and \(\chi \) will be continuous, it follows that \(\gamma_t > 0 \) at all times by Lemma 3. From the HJB equation, it is easy to see that

\[
\begin{align*}
v_{2t} &= -\sigma_Y^2 [u_{ac} + u_{ab} \hat{u}_{ac} - (1 - u_{ab} \hat{u}_{ac}) \beta_{0t}] / (\alpha_t \gamma_t) \quad (C.1) \\
v_{5t} &= -\sigma_Y^2 [u_{ab} \hat{u}_{ab} + u_{ab} \hat{u}_{ac} \alpha_t - \beta_{1t}] / (2 \alpha_t \gamma_t) \quad (C.2) \\
v_{7t} &= -\sigma_Y^2 [u_{ab} - \beta_{3t}] / (\alpha_t \gamma_t) \quad (C.3) \\
v_{9t} &= -\sigma_Y^2 [u_{ab} \hat{u}_{ab} \beta_{1t}(1 - \chi t) - \beta_{2t}(1 - u_{ab} \hat{u}_{ac})] / (\alpha_t \gamma_t). \quad (C.4)
\end{align*}
\]

Expressions (C.1)-(C.4) allow us to eliminate \(v_i \) and \(\dot{v}_i \), \(i \in \{2, 5, 7, 9\} \), in the HJB equation to get a system of ODEs for \((\gamma, \chi, \beta_0, \beta, v_0, v_1, v_3, v_4, v_6, v_8) \)—as a last step we verify that our \((\alpha, \gamma) \) satisfy \(|\alpha_t| |\gamma_t| > 0 \) all \(t \in [0, T] \), recovering the value function through (C.1)-(C.4).

The expressions in this system can be found in the Mathematica file \texttt{spm.nb} on our websites—we omit them in favor of stating the core subsystem with which we will be working below. The omitted system has three properties easily verified by inspection in the same file:

(i) the ODEs for \((\tilde{\beta}, v_6, v_8) \) do not contain \((v_0, v_1, v_3, v_4, \beta_0) \);

(ii) given \((\tilde{\beta}, v_6, v_8) \), \((v_0, v_1, v_3, v_4, \beta_0) \) form a non-homogeneous linear ODE system; and

(iii) \((\tilde{\beta}, v_6, v_8) \) carries \((1 - \chi) \) in the denominator.

Parts (i) and (ii) imply that we can focus on the sub-system \((\tilde{\beta}, v_6, v_8) \), as any linear system with continuous coefficients admits a unique solution for all times (Teschl, 2012, Corollary 2.6). Part (iii) reflects that the dynamic for \(L \) carries a denominator of that form; by Lemma 3, however, we know that \(\chi \in [0, 1) \) if the coefficients are continuous.

It is then convenient to use the change of variables \((\tilde{\beta}_2, \tilde{v}_0, \tilde{v}_8) = (\beta_2 / (1 - \chi), v_0 \gamma / (1 - \chi^2), v_8 \gamma / (1 - \chi)) \) that eliminates this denominator in the resulting system for the functions \((\gamma, \chi, \beta_1, \tilde{\beta}_2, \beta_3, \tilde{v}_0, \tilde{v}_8) \)—because \((\chi, \gamma) \) only depend on \((\beta_1, \beta_3) \) directly, it follows that \(\chi \in [0, 1) \) and \(\gamma > 0 \) in any solution to this system, and we trivially recover \((\beta_2, v_0, v_8) \).\footnote{Intuitively, \((v_0, v_1, v_4) \) are the coefficients of the constant, \(\theta \) - and \(\theta^2 \)-terms in the sender’s value function, none of which the sender controls, so they do not affect the rest of the system. The equations for \((\beta_0, v_3) \) are coupled and encode the \emph{deterministic} component of the sender’s incentive to manipulate beliefs; they do not enter the sub-system for \((\tilde{\beta}, v_6, v_8) \) but depend on the latter through the signal-to-noise ratio in \(Y \).}

\footnote{Our method for finding intervals of existence of LME relies on bounding solutions to ODEs uniformly, and this denominator would unnecessarily complicate that task since there is no upper bound on \(1/(1 - \chi) \) that applies to all environments. This change of variables is akin to working with \(\tilde{L} = (1 - \chi)L \) instead of \(L \).
We can now state the core subsystem of ODEs for \((\gamma, \chi, \beta_1, \tilde{\beta}_2, \beta_3, \tilde{v}_6, \tilde{v}_8)\) with which we will be working. Recall that \(\delta_{1t} = \dot{u}_{\theta \theta} + \dot{u}_{\theta \theta}(\beta_{1t}\chi_t + \beta_{3t})\).

\[
\dot{v}_{6t} = \tilde{v}_{6t}[r + \alpha_t^2 \gamma_t/\sigma_Y^2 + 2\delta_{1t}^2 \gamma_t\chi_t/\sigma_X^2] - (\gamma_t/2) \left\{ \beta_{1t} \dot{u}_{aa}[2u_{\theta \theta} + u_{aa}\dot{u}_{aa}] + \tilde{\beta}_{2t}(2\beta_{1t} + \tilde{\beta}_{3t})[-1 + 2u_{aa}\dot{u}_{aa} + u_{aa}\dot{u}_{aa}^2] \right\}
\]

\[
\dot{v}_{8t} = \tilde{v}_{8t}[r + \delta_{1t}^2 \gamma_t\chi_t/\sigma_X^2] - \gamma_t \left\{ (\tilde{\beta}_2 + \beta_{1t})[u_{\theta \theta} + u_{\theta \theta}\dot{u}_{aa}] - \beta_{1t}\beta_{3t} \right\}
\]

\[
\dot{\beta}_{1t} = r \frac{\alpha_t^2}{\alpha_t^2 + \beta_{1t} - \beta_{3t}} \left(\gamma_t^2 \sigma_X^2 (u_{\theta \theta} + u_{aa}\dot{u}_{aa}\chi_t) \right)^{-1} \times
\left\{ \beta_{2t}2(1 - u_{aa}\dot{u}_{aa})(u_{\theta \theta} + \beta_{1t}\chi_t) + \beta_{3t}^2[\sigma_X^2 \alpha_t \chi_t(u_{\theta \theta} + u_{aa}\dot{u}_{aa}\chi_t) + \beta_{1t}(1 - 2u_{aa}\dot{u}_{aa})^2 \sigma_X^2 \delta_{1t}^2 \chi_t]
\right.
\]

\[
\dot{\beta}_{2t} = r \frac{\alpha_t^2}{\alpha_t^2 + \beta_{2t} - \beta_{3t}} \left(\gamma_t^2 \sigma_X^2 (u_{\theta \theta} + u_{aa}\dot{u}_{aa}\chi_t) \right)^{-1} \times
\left\{ \beta_{2t}2(1 - u_{aa}\dot{u}_{aa})(u_{\theta \theta} + \beta_{1t}\chi_t) + \beta_{3t}^2[\sigma_X^2 \alpha_t \chi_t(u_{\theta \theta} + u_{aa}\dot{u}_{aa}\chi_t) + \beta_{1t}(1 - 2u_{aa}\dot{u}_{aa})^2 \sigma_X^2 \delta_{1t}^2 \chi_t]
\right.
\]

\[
\dot{\beta}_{3t} = r \frac{\alpha_t^2}{\alpha_t^2 + \beta_{3t} - \beta_{3t}} \left(\gamma_t^2 \sigma_X^2 (u_{\theta \theta} + u_{aa}\dot{u}_{aa}\chi_t) \right)^{-1} \times
\left\{ \beta_{2t}2(1 - u_{aa}\dot{u}_{aa})(u_{\theta \theta} + \beta_{1t}\chi_t) + \beta_{3t}^2[\sigma_X^2 \alpha_t \chi_t(u_{\theta \theta} + u_{aa}\dot{u}_{aa}\chi_t) + \beta_{1t}(1 - 2u_{aa}\dot{u}_{aa})^2 \sigma_X^2 \delta_{1t}^2 \chi_t]
\right.
\]

\[
\gamma_t = -(\beta_{1t}\chi_t + \beta_{3t})^2 \gamma_t^2 / \sigma_Y^2, \quad \chi_t = \gamma_t \left[(\beta_{1t}\chi_t + \beta_{3t})^2(1 - \chi_t)/\sigma_Y^2 - \sigma_{1t}^2 \chi_t^2 / \sigma_X^2 \right].
\]

This system has two initial conditions \((\gamma_0, \chi_0) = (\gamma^o, 0)\). It also has terminal conditions for \((\beta_{1T}, \tilde{\beta}_{2T}, \beta_{3T}, \tilde{v}_{6T}, \tilde{v}_{8T})\) that depend on whether there are terminal payoffs. In what
follows, we focus on the case without terminal payoffs—i.e., where the terminal conditions are \((\beta_{mT}^1, \beta_{mT}^2, \beta_{mT}^3, 0, 0)\)—postponing the discussion of terminal payoffs to the end of the analysis. We note that the remaining denominators never vanish thanks to Assumption 2, and that all the ODEs carry \(r\)-independent terms that scale linearly in \(\gamma\); this latter property will allow us to find horizons for existence that are inversely proportional to \(\gamma^\alpha\).

Centering: To exploit discounting, we focus on the centered system \((\gamma, \chi, \beta_1^c, \tilde{\beta}_2^c, \tilde{\beta}_3^c, \tilde{v}_6, \tilde{v}_8)\), where \((\beta_1^c, \beta_2^c, \beta_3^c)\) denotes \((\beta_1, \tilde{\beta}_2, \beta_3)\) net of the myopic counterpart. The tuple \((\beta_1, \tilde{\beta}_2, \beta_3)\) is constructed going backward in time from its terminal value as with backward induction (i) the RHS of the ODEs for \((\beta_1^c, \beta_2^c, \beta_3^c)\) are functions of \(\gamma\) and are independent of \(r\), (ii) \((\beta_1^c, \beta_2^c, \beta_3^c)\) carry a factor of \(\gamma\) through \(\tilde{\chi}\), and (iv) \(\alpha^m\) always refers to the backward system when invoking this tuple. Also, let

\[
\beta_0^c := (\beta_1^c, \beta_2^c, \beta_3^c)
\]

The next lemma states the key properties of this backward centered system, noting that (i) the RHS of the ODEs for \((\beta_1, \tilde{\beta}_2, \beta_3)\) above are polynomials in \((\beta_1, \tilde{\beta}_2, \beta_3)\), (ii) \((\beta_1^c, \beta_2^c, \beta_3^c)\) is constructed going backward in time from its terminal value as with backward induction in discrete time. One would expect higher discount rates to pull these coefficients towards the myopic values more strongly, thereby facilitating the existence of LME. Indeed, the term \(-r \frac{\partial}{\partial \alpha^m} (\beta_i - \beta_i^m)\) in the time-reversed version of the \(\beta_i\)-ODE reflects this fact as long as \(\alpha := \beta_1 \chi + \beta_3\) does not change sign. To exploit the effect of discounting when finding intervals of existence, it is then useful to introduce the centered coefficients, i.e., \(x^c_{it} := x_{it} - x^m_{it}\) for \(x \in \{\beta_1, \tilde{\beta}_2, \beta_3\}\), and work with the ODEs of \((\beta_1^c, \beta_2^c, \beta_3^c, \tilde{v}_6, \tilde{v}_8)\) in backward form.\(^{37}\)

The initial condition is that \(\beta_0^c := (\beta_1^c, \beta_2^c, \beta_3^c)\).

Lemma C.1. For \(x \in \{\beta_1, \tilde{\beta}_2, \beta_3\}\) and \(y \in \{\tilde{v}_6, \tilde{v}_8\}\), the (backward) ODEs that \(x^c\) and \(y\) satisfy have the form

\[
\begin{align*}
\dot{x}^c_t &= -r x^c_t \frac{\alpha_t}{\alpha^m_t} + \frac{\gamma t h_x(\tilde{\beta}_c, \tilde{v}_6 \tilde{v}_8, \chi, t)}{\sigma^2 \sigma_Y^2 (u_{\alpha \theta} + u_{\alpha \tilde{a} \tilde{a} \theta} \chi t)^{n_1,x} (1 - u_{\tilde{a} \tilde{a}} \hat{u}_{\alpha \tilde{a}} \chi t)^{n_2,x} (1 - u_{\tilde{a} \tilde{a}} \hat{u}_{\tilde{a} \tilde{a}} \chi t)^{n_3,x}} \\
\dot{y}_t &= -y_t \left[r + \gamma t R_y(\tilde{\beta}_c, \tilde{v}_6, \tilde{v}_8, \chi, t) \right] + \frac{\gamma t h_y(\tilde{\beta}_c, \chi_t)}{\sigma^2 \sigma_Y^2 (u_{\alpha \theta} + u_{\alpha \tilde{a} \tilde{a} \theta} \chi t)^{n_1,y} (1 - u_{\tilde{a} \tilde{a}} \hat{u}_{\alpha \tilde{a}} \chi t)^{n_2,y} (1 - u_{\tilde{a} \tilde{a}} \hat{u}_{\tilde{a} \tilde{a}} \chi t)^{n_3,y}},
\end{align*}
\]

where \(n_{i,x} \in \mathbb{N}, i = 1, 2, 3, \) and \(h_x, h_y,\) and \(R_y \geq 0\) are polynomials.\(^{38}\) The initial conditions are \((\beta_0^c, \tilde{v}_6, \tilde{v}_8) = (0, 0, 0, 0, 0)\).

In particular, notice that (i) the terms not containing \(r\) continue scaling with \(\gamma\), (ii)
the denominators are bounded away from zero, and (iii) the discount rate term pushes any solution towards zero when α does not change sign. We turn to this issue in the next step.

Auxiliary variable: To exploit discounting, we introduce an auxiliary variable $\tilde{\alpha} \neq 0$ and work with an ODE-system for $(\gamma, \chi, \beta_1, \tilde{\beta}, \beta_2, \tilde{\beta}, \bar{v}_6, \bar{v}_8, \tilde{\alpha})$. Observe that α will indeed never vanish in any solution to the centered system. In fact, a tedious but straightforward exercise shows that in backward form, $\alpha = \beta_1 \chi + \beta_3$ satisfies

$$
\dot{\alpha}_t = \alpha_t \left\{-r \left(\frac{\alpha_t}{\alpha_t^m} - 1\right) + \gamma_t [\sigma^2_X \sigma^2_Y (u_{a\theta} + u_{a\hat{a}} \hat{u}_{a\theta} \chi_t)]^{-1} \times \right\}
\right.$$

$$
\left\{\left[\delta_{1t} [\beta_{1t} \chi_t + \beta_{3t}] \sigma^2_X u_{a\theta} + \delta_{1t} \chi_t \sigma^2_Y (2\tilde{\beta}_{2t} [1 - u_{a\hat{a}} \hat{u}_{a\hat{a}}] + \beta_{1t} [1 - 2u_{a\hat{a}} \hat{u}_{a\hat{a}}]) + (\beta_{1t} \chi_t + \beta_{3t}) (\delta_{1t} \bar{v}_8 + \sigma^2_X [u_{a\theta} \delta_{1t} + u_{a\hat{a}} (\beta_{1t} \chi_t + \beta_{3t})])]\right]\right\} ,
\right.
$$

(C.5)

with initial condition $\alpha_0 = \alpha_0^m = \frac{u_{a\theta} + u_{a\hat{a}} \hat{u}_{a\theta} \chi_0}{1 - u_{a\hat{a}} \hat{u}_{a\hat{a}}} \chi_0$ (here, for consistency, χ_0 is the terminal value of χ going forward in time). By Assumption 2, α_0^m always has the same sign as $u_{a\theta}$ because $\chi_0 \in [0, 1]$. Also, the right-hand side of (C.5) is proportional to α, so it vanishes at $\alpha \equiv 0$. By the comparison theorem, α is always nonzero, as the ODE is locally Lipschitz continuous in α uniformly in time. Moreover, since α^m never changes sign, $\alpha/\alpha^m > 0$.

However, our fixed point argument will input general (γ, χ) pairs into the backward ODEs of Lemma C.1, pairs that need not solve the learning ODEs (or even be differentiable). Thus, we will not be able to use a comparison argument like the above to show that each induced $\alpha := \beta_1 \chi + \beta_3$ never changes sign for any (γ, χ), allowing us to exploit the discount rate.

To circumvent this difficulty, we augment the BVP with an auxiliary variable $\tilde{\alpha}$ to serve as a proxy for α in the r term in the centered system; by construction, it will share the sign of α^m and, in any solution to the BVP, will coincide with α. Specifically, observe that using the decomposition $x = x^c + x^m$ for $x \in \{\beta_1, \tilde{\beta}_2, \beta_3\}$ yields that the r-independent term inside the outer brace of (C.5) is of the form

$$
\frac{\gamma_t h_\alpha (\tilde{\beta}, \tilde{v}_6, \tilde{v}_8, \chi_t)}{\sigma^2_X \sigma^2_Y (u_{a\theta} + u_{a\hat{a}} \hat{u}_{a\theta} \chi_t)^{n_1, \alpha} (1 - u_{a\hat{a}} \hat{u}_{a\hat{a}})^{n_2, \alpha} (1 - u_{a\hat{a}} \hat{u}_{a\hat{a}})^{n_3, \alpha}} ,
$$

where h_α is a polynomial and $n_j, \alpha \in \mathbb{N}$, $j = 1, 2, 3$. We introduce the (backward) linear ODE

$$
\dot{\tilde{\alpha}}_t = \tilde{\alpha}_t \left\{-r \left(\frac{\tilde{\alpha}_t}{\tilde{\alpha}_t^m} - 1\right) + \frac{\sigma^2_X \sigma^2_Y \gamma_t h_\alpha (\tilde{\beta}, \tilde{v}_6, \tilde{v}_8, \chi_t)}{(u_{a\theta} + u_{a\hat{a}} \hat{u}_{a\theta} \chi_t)^{n_1, \alpha} (1 - u_{a\hat{a}} \hat{u}_{a\hat{a}})^{n_2, \alpha} (1 - u_{a\hat{a}} \hat{u}_{a\hat{a}})^{n_3, \alpha}} \right\}
$$

with initial condition $\tilde{\alpha}_0 = \alpha_0^m$. That is, the right-hand side of (C.6) is exactly as the one in (C.5) except for $\tilde{\alpha}$ now multiplying the bracket. The exact same application of the comparison argument between α and 0 shows that $\tilde{\alpha}$ never vanishes over its interval of existence for any pair (γ, χ) Lipschitz taking values in $[0, \gamma^\alpha] \times [0, 1]$, and $\tilde{\alpha}/\alpha^m > 0$.

Our augmented BVP then consists of the ODEs of $x^c = \beta_1^c, \tilde{\beta}_2^c, \beta_3^c$ in Lemma C.1 with a modified r-term of the form $-r x^c \frac{\tilde{\alpha}}{\alpha^m}$, i.e., with $\tilde{\alpha}$ replacing α in the numerator of the
fraction accompanying \(r \). It also includes: the ODEs of \(y = \tilde{v}_6, \tilde{v}_8 \); the learning ODEs (9)-(10); and the ODE (C.6) of \(\tilde{\alpha} \).\(^{39}\) The resulting system of ODEs—denote it \(\tilde{z}_t = F(\tilde{z}_t) \), where \(\tilde{z} := (\gamma, \chi, \tilde{\beta}^c, \tilde{v}_6, \tilde{v}_8, \tilde{\alpha}) \)—is such that each component of \(F(\tilde{z}) \) is a polynomial divided by a product of powers of \(1 - u_{a\tilde{a}} \tilde{u}_{a\tilde{a}}, 1 - u_{a\tilde{a}} \tilde{u}_{a\tilde{a}} \chi_t \), and \(u_{a\tilde{a}} + u_{a\tilde{a}} \tilde{u}_{a\tilde{a}} \chi_t \). Since the latter are bounded away from zero, \(F \) is of class \(C^1 \). We verify at the end of the proof that any solution to this augmented BVP satisfies that \(\alpha := \beta_1 \chi + \beta_3 \) coincides with \(\tilde{\alpha} \) by construction.\(^{40}\)

Fixed point: Use a fixed-point argument to show that there are horizon lengths of order \(1/\gamma^o \) such that the augmented BVP admits a solution. We will prove the following result:

Theorem C.1. Under Assumptions 1 and 2, there is a strictly positive function \(T^*(\gamma^o) \in \Omega(1/\gamma^o) \) such that if \(T < T^*(\gamma^o) \), there exists a solution to the BVP in \(\tilde{z} = (\gamma, \chi, \tilde{\beta}^c, \tilde{v}_6, \tilde{v}_8, \tilde{\alpha}) \).

Proof. The proof consists of converting the BVP into a fixed point problem over pairs \(\lambda := (\gamma, \chi) \) in a suitable set. Specifically, for a given \(\lambda \) we can first solve the backward initial value problem (IVP) in the variables \((\tilde{\beta}^c, \tilde{v}_6, \tilde{v}_8, \tilde{\alpha}) \) that takes \(\lambda \) as an input. Second, we can solve the forward IVP for the two learning coefficients that takes as an input the solution from the previous step. This procedure generates a continuous mapping from candidate \(\lambda \) paths in a suitable set to itself, to which we apply Schauder’s fixed point theorem.

Step 1: Define the domain for our fixed point equation. Let \(C \) denote the Banach space of continuous functions from \([0, T]\) to \(\mathbb{R} \), equipped with the sup norm \(||.||_\infty \) defined by \(||x||_\infty := \sup\{|x_t| : t \in [0, T]\} \). (To economize on notation, we use \(||.||_\infty \) to denote the supremum norm for objects of all other dimensions too.) By the Arzela-Ascoli theorem (Ok, 2007, p. 198), the space of uniformly bounded functions with a common Lipschitz constant is a compact subspace of \(C \). In particular, for all \(\rho, K > 0 \), define \(\Gamma(\rho + K) \subset C \) as the space of uniformly Lipschitz continuous functions \(\gamma : [0, T] \to [0, \gamma^o] \) with uniform Lipschitz constant \((\gamma^o)^2(2[\rho + K])^2/\sigma^2_\gamma \) that satisfy \(\gamma_0 = \gamma^o \). Likewise, let \(X(\rho + K) \subset C \) denote the space of Lipschitz continuous functions \(\chi : [0, T] \to [0, 1] \) with uniform Lipschitz constant \(\gamma^o [2[\rho + K])^2/\sigma^2_\chi + (|\tilde{u}_{a\tilde{a}}| + |\tilde{u}_{a\tilde{a}}| 2[\rho + K])^2/\sigma^2_\chi \] that satisfy \(\chi_0 = 0 \). Thus, the product \(\Lambda(\rho + K) := \Gamma(\rho + K) \times X(\rho + K) \) is a compact subspace of \(C^2 \).

We note that the these Lipschitz constant are motivated by a bounding exercise of the \(\gamma \) and \(\chi \) ODEs that uses \(|\beta^c_i| < K \) and \(|\beta^m_i| < \rho \), implying that \(|\beta_i| < \rho + K, i = 1, 3 \). Below, we shall construct horizons over which any solution satisfies this property.

Step 2: Given \((\gamma, \chi) \in \Lambda(\rho + K) \), define a backward initial value problem (IVP) for \((\tilde{\beta}^c, \tilde{v}_6, \tilde{v}_8, \tilde{\alpha}) \), and establish sufficient conditions for this IVP to have a unique solution. For any function \(x \), let us use \(\tilde{x}_t := x_{T-t} \) to emphasize the time-reversed version of \(x \).

\(^{39}\)For consistency, the \(\alpha_i \) in the \(r \)-term in (C.6) and in (9)-(10) must be written as \((\beta^c_{11} + \beta^c_{12}) \chi_t + \beta^c_{31} + \beta^c_{32} \).

\(^{40}\)In a slight abuse of notation, \(\tilde{z}_t = F(\tilde{z}_t) \) assumes that the ODEs have been stated in only one direction.
whenever convenient (not to be confused with the hat notation used in the main body). Given any \(\lambda \in \Lambda(\rho + K) \), where \((\rho, K) \in \mathbb{R}^2_+ \), we can define a (backward) IVP consisting of the ODEs for \((\hat{\beta}, \hat{v}_6, \hat{v}_8, \hat{\alpha}) \) previously stated, but where \(\hat{\lambda} \) is used in place of the solutions of the learning ODEs. We write this problem as

\[
\dot{b}_t = f^\hat{\lambda}(b_t, t) \quad \text{s.t.} \quad b_0 = (0, 0, 0, 0, 0, \alpha^m(\hat{\lambda}_0)), \tag{IVP^{bwd}(\hat{\lambda})}
\]

where the use of boldface distinguishes solutions to this IVP from those of our original BVP. We write \(b(\cdot; \lambda) \) for the solution as a functional of the input \(\lambda \). The extra dependence on time in the right hand side of (IVP^{bwd}(\hat{\lambda})) is due to the role of \(\lambda \) in the system.

For all \(\lambda_t \in [0, \gamma^o] \times [0, 1] \), let \(B(\lambda_t) := (\beta_1^m(\lambda_t), \beta_2^m(\lambda_t), \beta_3^m(\lambda_t), 0, 0, \alpha^m(\lambda_t)) \). From here, we define \(\rho := \sup_{t \in [0, \gamma^o] \times [0, 1]} ||B_{-i}(\lambda_t)||_\infty > 0 \), with \(B_{-i} \) denoting as usual the vector \(B \) excluding \(B_i \).\footnote{We exclude \(\hat{\alpha} \) from the definition of \(\rho \) because it does not enter the ODEs for the learning coefficients explicitly, and hence it does not affect the definition of \(\Lambda(\rho + K) \).} For arbitrary \(K > 0 \), we now establish sufficient conditions for (IVP^{bwd}(\hat{\lambda})) to have a unique solution for each \(\lambda \in \Lambda(\rho + K) \).

Lemma C.2. Fix \(\gamma^o, K > 0 \). There exists a threshold \(T(\gamma^o; K) > 0 \) such that if \(T < T(\gamma^o; K) \), then for all \(\lambda \in \Lambda(\rho + K) \), a unique solution \(b(\cdot; \lambda) \) to (IVP^{bwd}(\hat{\lambda})) exists over \([0, T]\) and satisfies \(||b_i(\cdot; \lambda)||_\infty < K \) for all \(i \in \{1, \ldots, 5\} \). Moreover, \(T(\gamma^o; K) \in \Omega(1/\gamma^o) \).

Proof. Fix any \(\lambda \in \Lambda(\rho + K) \). Since \(\lambda \) is continuous in \(t \) and \(f^{\hat{\lambda}} \) is of class \(C^1 \) with respect to \(b_t \), \(f^{\hat{\lambda}} \) is locally Lipschitz continuous in \(b_t \), uniformly in \(t \). By Peano’s theorem, a local solution exists; and by the Picard-Lindelöf theorem, solutions are unique given existence. Given \(K > 0 \), we now construct \(T(\gamma^o; K) \) such that a solution exists over \([0, T]\) and satisfies \(||b_i(\cdot; \lambda)||_\infty < K \) for \(i \in \{1, \ldots, 5\} \).

We state two facts that hold over any interval of existence. First, using the ODEs adapted from Lemma C.1 (using \(\hat{\alpha} \) instead of \(\alpha \) in the \(t \) terms), we have for \(i \in \{1, 2, 3\} \) and \(j \in \{4, 5\} \)

\[
b_{it} = \int_0^t e^{-r s} \int_s^t \frac{du}{u} \hat{\gamma}_i h_i(b_s, \hat{\chi}_s) ds \quad \text{and} \quad b_{jit} = \int_0^t e^{-r s} \int_s^t (r + \gamma^o R_j(b_s, \hat{\chi}_s)) du \hat{\gamma}_j h_j(b_s, \hat{\chi}_s) ds.
\]

Here, \(h_i \) and \(h_j \) include the denominators that were factored out of \(h_x \) and \(h_y \) in Lemma C.1, and do not contain \(\hat{\alpha} \); \(R_j \) is only a relabeling of \(R_y \) from the same lemma. Second, as long as the conjectured bounds \(|b_{it}| < K \) for \(i \in \{1, 2, \ldots, 5\} \) hold, a direct bounding exercise on \(h_i \) that uses \(\chi_t \in \{0, 1\} \) yields the existence of a scalar \(h_i(K) \) such that \(|\hat{\gamma}_i h_i(b_s, \hat{\chi}_s)| \leq \gamma^o h_i(K), \)

\(i \in \{1, 2, \ldots, 5\} \), where we have used that \(\gamma_t \in [0, \gamma^o] \) at all times.

Equipped with the equations above for \(b_i \) and with \(h_i(K), i \in \{1, \ldots, 5\} \), notice that the bound \(|b_{it}| < K \) clearly holds for small \(t \). And as long as it holds, \(\hat{\alpha} \) is finite because \(b_{it} \) has
the form $\alpha^n_0 e^{\int_0^s G_x ds}$ with $|G_s| < +\infty$ as the latter depends only on $(b_{-6}, \hat{\chi})$ at time $s \in [0, t]$. Moreover, $\hat{\alpha}/\alpha^n_i > 0$ (see ‘Auxiliary Variable’). Thus, for $i \in \{1, 2, 3\}$ and $j \in \{4, 5\}$,

$$
|b_{it}| \leq \int_0^t e^{-\gamma \lambda \int_s^t du \gamma h_i(K)} ds \leq \int_0^t \gamma h_i(K) ds = t \gamma h_i(K)
$$

$$
|b_{jt}| \leq \int_0^t e^{-\gamma \lambda \int_s^t du \gamma h_j(K)} ds \leq \int_0^t \gamma h_j(K) ds = t \gamma h_j(K),
$$

where we have used that the exponential term is less than 1. Imposing that the right-hand sides above are themselves smaller than K leads us to $T(\gamma^n; K) := \min_{i \in \{1, \ldots, 5\}} \frac{K}{\gamma h_i(K)} > 0$ such that $(IVP^{\text{bwd}}(\lambda))$ with $T < T(\gamma^n; K)$ by construction admits a unique solution satisfying $|b_{-6}| < K$ for all $\lambda \in \Lambda(\rho + K)$. Moreover, since $T(\gamma^n; K)$ is independent of r, the statement holds for all $r \geq 0$; also $T(\gamma^n; K) \in \Omega(1/\gamma^n)$.\footnote{It is clear from the argument that $\hat{\alpha}$ is also uniformly bounded for all $\lambda \in \Lambda(\rho + K)$. Also, the linearity of the $\hat{\alpha}$-ODE (C.6) implies that the interval of existence is constrained only by the ODEs for b_i, $i \in \{1, \ldots, 5\}$.}

In what follows, assume $T < T(\gamma^n; K)$. Lemma C.2 implies that $\lambda \in \Lambda(\rho + K) \mapsto b(\cdot; \lambda)$ is a well-defined function linking λ paths to corresponding solutions to the backward IVP. We can then define the functional

$$
q(\lambda) := (b_1(\cdot; \lambda), \hat{b}_3(\cdot; \lambda)) + (B_1(\lambda(\cdot)), B_3(\lambda(\cdot)))
$$

that for each λ delivers the induced “total” ‘β_1’ and ‘β_3’ forward-looking coefficients—the centered components delivered by the previous IVP plus the myopic counterparts—that we will use as an input in the learning ODEs below. (Clearly, each $q(\lambda)$ function is a continuous function of time.) The continuity of this functional is key for our fixed-point argument.

Step 3: The operator $\lambda \mapsto q(\lambda)$ is continuous and $||q(\lambda)||_\infty < \rho + K$ for all $\lambda \in \Lambda(\rho + K)$. Let us show, more generally, that $\lambda \mapsto b(\cdot; \lambda)$ is continuous; since $\lambda \mapsto B_i(\lambda(\cdot))$ is clearly continuous due to $\beta^n_i = \beta^n_i(\chi(\cdot))$ being of class C^1, $i \in \{1, 3\}$, the result will follow. To this end, we make use of the following lemma, proved in the Online Appendix.

Lemma C.3. Let $X \subseteq \mathbb{R}^n$, $Y \subseteq \mathbb{R}^m$ and $U \subseteq \mathbb{R}^n$ be compact sets. Consider $F : X \times Y \to U$ of class C^1 and $\omega : Y \to X$. Suppose $\mathcal{Y} \subset C([0, T]; Y)$ is a collection of functions such that for all $y \in \mathcal{Y}$, the initial value problem IVP(y) defined by $\dot{x}_t = F(x_t, y_t)$ and $x_0 = \omega(y_0)$ admits a solution defined over $[0, T]$. Then there exist constants k_1 and k_2 (depending on T) such that for all $y^1, y^2 \in \mathcal{Y}$, the corresponding solutions x^i to IVP(y^i) satisfy

$$
||x^1_t - x^2_t||_\infty \leq k_1 ||\omega(y^1_0) - \omega(y^2_0)||_\infty + k_2 \sup_{s \in [0, T]} ||y^1_s - y^2_s||_\infty, \quad \text{for all } t \in [0, T].
$$
Now consider any $\lambda^1, \lambda^2 \in \Lambda(\rho + K)$. We apply Lemma C.3 to: $x = b; y^i = \hat{\lambda}^i, i = 1, 2; \\
\omega(\cdot) = (0, 0, 0, 0, 0, \alpha^m(\cdot)); F(x_t, y_t) := f^\lambda(b_t, t)$; and X and Y the hypercubes defined by the uniform bounds on b and λ, respectively. Using that $\|x\|_\infty = \|\dot{x}\|_\infty$, we obtain
\[
\|\hat{b}(\cdot; \lambda^1) - \hat{b}(\cdot; \lambda^2)\|_\infty = \sup_{t \in [0, T]} \|b_t(\lambda^1) - b_t(\lambda^2)\|_\infty \leq k_1|\alpha^m(\lambda^1_T) - \alpha^m(\lambda^2_T)| + k_2|\lambda^1 - \lambda^2|\|_\infty,
\]
for some constants k_1 and k_2. Since $\lambda_T \mapsto \alpha^m(\lambda_T)$ is continuous, it follows that $\|\hat{b}(\cdot; \lambda^1) - \hat{b}(\cdot; \lambda^2)\|_\infty \to 0$ as $|\lambda^1 - \lambda^2|\|_\infty \to 0$, yielding the desired result.

Finally, $\|q(\lambda)\|_\infty < \rho + K$ follows from $\|\hat{b}(\cdot; \lambda)\|_\infty < K$ and $\|B_i(\lambda_T)\|_\infty < \rho, i = 1, 3$.

Step 4: Construct a continuous self-map on $\Lambda(\rho + K)$ using the IVP for the learning ODEs. Take $\lambda \in \Lambda(\rho + K)$ and define the IVP for $\lambda = (\lambda_1, \lambda_2)$
\[
\dot{\lambda}_t = f^\lambda(\lambda_t, t) \text{ s.t. } \lambda_0 = (\gamma^\circ, 0), \quad (\text{IVP}^{\text{fwd}}(q(\lambda)))
\]
consisting of the two (forward) learning ODEs (9)-(10) that use as input $q(\lambda) = (q_1(\lambda), q_2(\lambda))$ playing the role of (β_1, β_3)—here, the first (second) entry of the system corresponds to the γ-ODE (χ-ODE), while the boldface convention aims at distinguishing between inputs λ via q and induced solutions λ to this IVP. Importantly, because for all $\lambda \in \Lambda(\rho + K)$ the function $q(\lambda)$ is continuous in time, Lemma 3 gives existence and uniqueness of a solution to $(\text{IVP}^{\text{fwd}}(q(\lambda)))$ defined over $[0, T]$ that satisfies $\lambda_t \in (0, \gamma^\circ] \times [0, 1]$ for all such times.

Next, we argue that $\lambda \in \Lambda(\rho + K)$. By construction, $\lambda_0 := (\lambda_{10}, \lambda_{20}) = (\gamma^\circ, 0)$, and as noted above, $\lambda_t \in (0, \gamma^\circ] \times [0, 1]$ for all $t \in [0, T]$. Moreover, from the γ-ODE, we have that $|\dot{\lambda}_{1t}| = \left| \frac{\dot{\lambda}_{1t}((\underline{\lambda}_2(\lambda))_t + [\underline{\lambda}(\lambda)]_t, \lambda_{2t})^2}{\sigma_1^2} \right| \leq (\gamma^\circ)^2(2[\rho + K])^2/\sigma_1^2$ for all $t \in [0, T]$. Similarly, from the χ-ODE, $|\dot{\lambda}_{2t}| \leq \gamma^\circ [(2[\rho + K])^2/\sigma_2^2 + (|\dot{u}_{\lambda\hat{\nu}}| + |\dot{u}_{\lambda\lambda\hat{\nu}}|)(2[\rho + K])^2/\sigma_2^2]$. Since the Lipschitz bounds in the definition of $\Lambda(\rho + K)$ are satisfied, $\lambda \in \Lambda(\rho + K)$.

Finally, by Lemma C.3 applied to $(\text{IVP}^{\text{fwd}}(q(\lambda)))$ by setting $x = \lambda, y = q(\lambda), \omega(y_0) = (\gamma^\circ, 0), F(x_t, y_t) = f^\lambda(\lambda_t, t), X = [0, \gamma^\circ] \times [0, 1]$ and $Y = [-\rho - K, \rho + K]^2$, we conclude that $q \mapsto \lambda(q)$ is continuous. Since $\lambda \mapsto q(\lambda)$ is continuous (Step 3), it follows that $g(\lambda) := \lambda(q(\lambda))$ is a continuous map from $\Lambda(\rho + K)$ to itself.

Step 5: Show that g has a fixed point. By Step 1, $\Lambda(\rho + K)$ is a nonempty, compact, convex Banach space, and by Step 4, g is a continuous map from $\Lambda(\rho + K)$ to itself. By Schauder’s Theorem (Zeidler, 1986, Corollary 2.13), there exists $\lambda^* \in \Lambda(\rho + K)$ such that $\lambda^* = g(\lambda^*)$. It is clear, by construction, that $(\lambda^*, \hat{b}(\cdot; \lambda^*))$, with $b(\cdot; \lambda^*)$ the solution to $(\text{IVP}^{\text{bwd}}(\lambda))$ under $\lambda = \lambda^*$, is a solution to the centered-augmented BVP under study. Finally, maximizing $T(\gamma^\circ; K)$ over $K > 0$ yields a $T^*(\gamma^\circ) > 0$ that is proportional to $1/\gamma^\circ$. \hfill \Box

Verification: Recover first a solution to the original BVP, and then to the full HJB equation.
We verify that the solution to the centered-augmented BVP induces a solution to the original BVP stated in the ‘Core subsystem’ section. To do this, we first note that any solution to the former BVP must satisfy the identity $\tilde{\alpha} \equiv \alpha$, where $\alpha_t := \beta_{1t} \chi_t + \beta_{3t} \beta_{3t} := \beta_{1t}^c + \beta_{3t}^m$ and $\beta_{3t} := \beta_{3t}^c + \beta_{3t}^m$—consequently, $(\gamma, \chi, \tilde{\beta}, \tilde{v}_6, \tilde{v}_8)$ solves the centered system defined in the ‘Centering’ step. Indeed, using the definition of the myopic coefficients as well as the ODEs for χ, β_{1t}^c, and β_{3t}^c yields that α in backward form satisfies

$$\dot{\alpha}_t = -r\tilde{\alpha}_t(\alpha_t/\alpha_t^m - 1) + \alpha_t \frac{\gamma_t h_{\alpha}(\tilde{\beta}, \tilde{v}_6, \tilde{v}_8, \chi_t)}{\tilde{x}\sigma^2_{\chi}\sigma^2_{\chi}(u_{\tilde{a}^g} + u_{\tilde{a}^g} \hat{u}_{\tilde{a}^g} \chi_t)^{n_1,\alpha} (1 - u_{\tilde{a}^g} \hat{u}_{\tilde{a}^g} \chi_t)^{n_2,\alpha} (1 - u_{\tilde{a}^g} \hat{u}_{\tilde{a}^g})^{n_3,\alpha}}.$$

Relative to (C.6), therefore, the r-term as well as the last fraction multiplying α coincide. Call this last term C_t—a continuous function of time—and observe that $p := \alpha - \tilde{\alpha}$ satisfies the ODE $\dot{p}_t = \beta_t C_t$ with initial condition $p_0 = 0$ due to $\alpha_0 = \tilde{\alpha}_0 = \alpha_0^m$ (recall that time is being reversed). By uniqueness, $p_t \equiv 0$ for all $t \in [0, T]$, confirming that $\alpha \equiv \tilde{\alpha}$.

Given this equivalence, it follows that $(\gamma, \chi, \beta_{1t}, \tilde{\beta}, \beta_{3t}, \tilde{v}_6, \tilde{v}_8) = (\lambda^*, \dot{b}_{-6}(\cdot; \lambda^*) + B_{-6}(\lambda^*))$ solves by construction the BVP stated in the ‘Core subsystem’ section. Moreover, as argued in Step 4 in the proof of Theorem C.1, $\gamma > 0$ and $\chi < 1$, so we can invert the change of variables $(\tilde{\beta}_2, \tilde{v}_6, \tilde{v}_8) = (\beta_2/(1 - \chi), v_6 \gamma/(1 - \chi)^2, v_8 \gamma/(1 - \chi))$ to obtain (β_2, v_6, v_8). And since $\alpha = \tilde{\alpha}$ never vanishes (see ‘Auxiliary variable’ section) and $\gamma > 0$, we can recover the rest of the coefficients in the value function as explained in the same section.

We extend our existence result to the case of terminal payoffs in the following corollary, proved in the online appendix. The bound on curvature ensures that we can select an equilibrium of the static terminal game with sufficient regularity for our method.

Corollary C.2. There exist $\bar{\psi} \in [-\infty, 0)$ and $T(\gamma^0) \in \Omega(1/\gamma^0)$ such that if $\psi_{\tilde{a}\tilde{a}} \in (\bar{\psi}, 0]$ and $T < T(\gamma^0)$, a linear Markov equilibrium exists for all $r \geq 0$.

References

45