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Abstract

We study dynamic signaling when the sender does not see the signals that her ac-

tions generate. The sender then uses her past play to forecast what a receiver believes,

in turn forcing the receiver to forecast the previous forecast, and so forth. We identify

a class of linear-quadratic-Gaussian games where this endogenous higher-order uncer-

tainty can be handled. The sender’s second-order belief is key: it is a private state that

she controls, and it creates a new channel for information transmission. We examine

the role of higher-order uncertainty and this new signaling channel in applications to

macroeconomics, reputation, and trading: inflationary biases under discretion can be

larger; career-concerned agents may benefit from not knowing their reputations; and

informed trades can carry more price impact. We also introduce an existence method

for boundary value problems that can be used in other dynamic games.

1 Introduction

The study of information transmission through actions has proven crucial for understanding

phenomena as diverse as central bank ambiguity (Cukierman and Meltzer, 1986), reputation

effects in industries (Milgrom and Roberts, 1982), and price discovery in financial markets

(Kyle, 1985). Such signaling games have naturally progressed from settings where the actions

of an informed “sender” are perfectly observable, to noisy environments in which signals of

behavior are imperfect, yet still commonly observed. In this paper, we depart from these

canonical sender-receiver games, involving public signals exclusively, by allowing the receiver

to privately observe a noisy signal of the sender’s actions. This departure, and the methods

that we develop, offer a path for addressing a whole new set of questions in dynamic signaling.

∗Cisternas: Federal Reserve Bank of New York, gonzalo.cisternas@ny.frb.org. Kolb: Indiana Uni-
versity Kelley School of Business, kolba@indiana.edu. We thank the Editor and three anonymous referees
for many helpful suggestions, as well as Alessandro Bonatti, Marco del Negro, Wouter Dessein, Mehmet Ek-
mekci, Eduardo Faingold, Robert Gibbons, Nathan Kaplan, Marina Halac, Antoine Martin, Stephen Morris,
Alessandro Pavan, Asani Sarkar, Andy Skrzypacz, Bruno Strulovici, Juuso Toikka, Vish Viswanathan, and
numerous audiences for useful comments. The views expressed in this paper are ours and do not necessarily
represent those of the Federal Reserve Bank of New York or the Federal Reserve System.

1



The real-world relevance of private signals of others’ behavior has been recognized since

the study of oligopolies by Stigler (1964). But signals of this nature may also play a key

role in a variety of other contexts: in macroeconomics, private signals of aggregate variables

can help explain the observed real effects of monetary shocks (Woodford, 2002); in the e-

commerce industry, data brokers routinely collect imperfect signals of consumer behavior to

secretly quantify unobserved consumer characteristics (Bonatti and Cisternas, 2020); and

in financial markets, certain traders can have a natural advantage in picking up signals of

others’ trades (Yang and Zhu, 2020). How do informed individuals—monetary authorities,

reputation-concerned consumers, sophisticated traders—behave when their actions generate

private information available to others? Does it really matter in terms of economic outcomes

that such senders do not know exactly what their relevant “receivers” believe?1

This paper offers the first framework for examining signaling games featuring private

signals of actions. In the class of games studied, a forward-looking sender (she) interacts with

a receiver (he) over a finite horizon. Both players have quadratic preferences, and they take

actions continuously over time. Further, the sender has a time-invariant normally distributed

type. All this is standard. The innovation, however, is that the receiver privately observes a

signal that is linear in the sender’s action and that is distorted by additive Brownian noise.

We close our baseline model with two extra ingredients. First, the receiver is myopic, which

allows us to isolate how the sender’s behavior changes solely due to the uncertainty that a

private signal creates—this can be relaxed, as we discuss in detail. Second, there is a public

signal of the receiver’s action, also distorted by Brownian noise; this commonly observed

signal serves as “external” data that the sender uses to learn about the receiver’s inferences.

To illustrate the core issue underlying our class of games, consider the following example.

Suppose that a monetary authority (the sender) has private information about the optimal

level of inflation for an economy. The authority takes actions that transmit this information,

but the signals observed by the private sector, or market (the receiver), are noisy. If those

signals are public, there is common knowledge of what the private sector has seen. But

this means that the monetary authority disregards her past actions when forecasting the

market’s belief: fixing any public history, counterfactually higher (lower) past actions only

indicate that the shocks in the signal must have been smaller (larger) to generate the same

signals—which is what the private sector ultimately sees and uses to form its estimates.

Our point is not to argue that this type of phenomenon is implausible. Rather, that it

seems less plausible than a situation in which the monetary authority reflects on her past

behavior and, say, with the aid of additional data, tries to gauge what the private sector

believes. This is what would happen if the authority ceases to observe all the signals of

1We discuss the differences from these papers in the literature review section.
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inflation seen by the market: her history of play retains statistical value—because higher

past actions become indicative of higher beliefs by the private sector, and vice versa—while

still allowing for the use of additional data to refine the estimates constructed with past play.

The challenge, of course, is that beliefs cease to be common knowledge in such a context.

Consider our example. As the private sector receives signals of the monetary authority’s

actions, it forms a belief about the economy. If the authority cares about these estimates—

because they shape inflation expectations—she has to form a second-order belief: a belief

about the private sector’s belief. As the authority relies on her past play to construct

this forecast, and her actions carry her type, the private sector may now need to forecast

this belief. But the resulting third-order belief will be based on private signals again, and

hence the forecasting problem gets restarted. In other words, attempting to enable signaling

games to deliver imperfect estimates that non-trivially depend on past play leads to the

classic problem of “forecasting the forecasts of others” (e.g., Townsend, 1983), but now with

players that have the power to individually affect the signals observed by others. The rest

of our applications—career concerns and insider trading, within the umbrella of models of

reputation and financial markets discussed earlier—also feature this form of higher-order

uncertainty, which is endogenous and dynamic, as it emerges and changes as play unfolds.2

Relative to games with private monitoring, we are able to construct equilibria in which

the players non-trivially condition their actions on private states in the form of beliefs.

Specifically, we focus on linear Markov equilibria (LMEs) in which, after all private histories,

the following states are used linearly: the sender uses her type and the mean of her second-

order belief, while the receiver uses the mean of his first-order belief; and both players also

rely on a “public belief,” the mean of the belief about the sender’s type for someone who only

observes the public signal (and assumes that the players follow their equilibrium strategies).

The sender’s second-order belief aggregates her past actions linearly, so it is always her

private information. Also, it is the only state of hers that she influences directly, paralleling

the traditional control of a receiver’s commonly known belief in public settings. Thus, any

equilibrium analysis requires establishing optimality with respect to this novel state.

The first contribution of the paper is to establish that no additional state variables are

needed—the “beliefs about beliefs” problem is manageable. We do so via a representation

of the sender’s second-order belief, along the path of play of linear Markov strategies, as a

convex combination of the sender’s type and our public state—precisely reflecting estimates

2The combination of (i) lack of common knowledge and (ii) a non-trivial use of past play to form beliefs
is what distinguishes private monitoring from other signal structures beyond the imperfect public case. For
instance, with perfect monitoring of the sender’s actions, the sender uses her past play to forecast what the
receiver knows, but the receiver’s belief is public. Instead, if the receiver sees exogenous private signals of a
sender’s type, common knowledge breaks but the sender does not need to condition on past play.
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that combine internal (i.e., past play) and external (i.e., public) data. As the full-support

monitoring makes deviations hidden, the receiver always believes that the representation

holds, and the linear aggregation of histories in this linear-quadratic-Gaussian (LQG) world

kicks in: via the representation, the receiver’s third-order belief combines his first-order be-

lief and the public belief (hence the use of the latter state), and iterating this logic up the

hierarchy of beliefs reveals that our states are sufficient statistics (even after deviations, be-

cause these are hidden). Allowing for an asymmetric—namely, a private-public—monitoring

structure is therefore key for making progress in this area of dynamic games.

Relative to traditional (i.e., public) noisy signaling games, we uncover a new channel for

information transmission: there is separation through the second-order belief. Indeed, given

any fixed history of the public signal, different types will now disagree about the receiver’s

belief: as different monetary authority types have behaved differently in the past, they will

expect different inflation expectations by the market, even after seeing the same data about

these expectations. In equilibrium, this separation is captured by the second-order belief’s

dependence on the type in the representation. We examine the impact of this new signaling

channel, and more generally of the higher-order uncertainty at play, in applications.

In our leading example, a monetary authority evaluates how to set inflation to best

balance her private information about the economy with her desire to stabilize output around

a target. As is standard, the private sector is trying to forecast the authority’s choice of

inflation at all times, which now requires forecasting the authority’s type. Meanwhile, the

monetary authority must forecast the private sector’s belief to determine how much inflation

is needed to surprise the economy and affect employment. Thus, a distinctive feature relative

to existing work is that here both parties are learning from each other as actions unfold.

Our tools enable us to compute the inflationary bias in the presence of higher-order un-

certainty. This measure of wasteful inflation is lower than if the authority were myopic, but

is in general larger than if the private sector’s beliefs were perfectly known (and the authority

still forward-looking). In essence, our LME uncovers an attempt to dampen inflation expec-

tations today relative to the myopic solution, and surprise the economy tomorrow at a lower

cost; but the benefit of this dampening depends on how responsive inflation expectations are.

The direct effect of higher-order uncertainty is to make these expectations more sluggish in

responding to the authority’s actions, in which case all types create more wasteful inflation.

Ex post, however, different types do influence output due to their private information.

As higher types have chosen higher inflation, they expect higher expectations by the market.

To stabilize output then, such higher types end up creating even more inflation; through the

second-order belief channel, the separation of types is amplified. An interesting strategic

effect arises due to this enhanced separation. A noisier public signal—which yields an envi-
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ronment with more higher-order uncertainty—induces a stronger reliance on past play in the

authority’s learning. As types separate more radically, there is more information transmis-

sion, which can eventually lead to more responsive market expectations and lower inflation:

the notion that higher degrees of higher-order uncertainty always imply less responsive be-

liefs can break, because behavior is affected. The two-sided learning aspect of our model,

coupled with the presence of players with the power to affect market variables, is key.

The rest of the applications explore our novel signaling channel in more depth. Succinctly,

our reputation game shows that if a career-concerned agent wants to be perceived as neutral,

she may prefer to not know exactly what her reputation is, despite this impeding her ability

to take the best actions to manage her reputation if she is perceived as biased. The reason is

that the new signaling channel can reduce the separation of types relative to the public case,

and so less information about the bias may get transmitted in the first place. Our trading

game instead shows that informed trades become costlier. Having traded more aggressively

in the past, higher types think that their receivers have higher beliefs, and hence that they

will buy more in the near future; this is superior information that can be exploited today.

Since aggressive trading today reinforces aggressive trading tomorrow—thereby amplifying

separation, and hence price impact—our trader slows down her purchases.

We conclude with the second technical contribution of the paper, which is to introduce a

method for showing the existence of LMEs. The LQG structure naturally gives prominence

to the means of posterior beliefs: these states aggregate the signals observed, and these

signals are affected by actions. But posterior variances—capturing the players’ learning—

are of great importance too, because they determine the sensitivity of posterior means to

signal realizations, and hence they matter for the choice of coefficients attached to the belief

states in the strategies. A complex feedback loop arises through this variance channel: the

players’ conjectured strategy coefficients affect posterior variances, which in turn shape the

evolution of the belief states and thus ultimately affect the choice of coefficients themselves.

In this LQG world, establishing the existence of an LME equates to solving a key bound-

ary value problem (BVP). This BVP consists of ordinary differential equations (ODEs) for

the coefficients in the sender’s strategy, which are traced backward from the endgame by

backward induction. But due to the feedback loop at play, these ODEs are coupled with

two “learning” counterparts that are traced forward from initial values: one ODE for the

receiver’s posterior variance and another for the weight on the type in the representation,

encoding the sender’s learning. The challenge here is the presence of multiple ODEs in both

directions: existing work has dealt with settings in which only one learning ODE arises due

to the players signaling and learning at the same rate. If the environment is asymmetric,

and the players signal at different rates, the traditional methods used so far do not apply.
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The feedback loop present hints at a fixed-point approach for proving that our BVP has

a solution. What is perhaps less clear is how exactly to construct a fixed-point problem that

is tractable and informative. We argue that an infinite-dimensional approach over candidate

solutions to the learning ODEs is the best avenue. We discuss this method extensively:

how it is a major step forward; how it effectively exploits the economics of the problem;

and how it can be implemented in other (potentially asymmetric and not necessarilly LQG)

settings featuring a feedback among ODEs. Via this approach, we prove the existence of

LMEs for horizon lengths up to threshold times with two key properties: they are inversely

proportional to the prior variance of the sender’s type, but independent of the discount rate.

Thus, these times are conservative bounds and can be improved on a case-by-case basis.

We review the related literature next. Section 2 presents our model and applications. Sec-

tion 3 the representation result and the sender’s best-response problem. Section 4 examines

applications. Section 5 proves existence of LMEs. Section 6 discusses our existence method

and assumptions. The Appendix and Supplementary Appendix contain all the proofs.

Related literature Relative to two-player signaling games, our dynamic model features

evolving beliefs that are not common knowledge and can explicitly depend on past play.

These features are absent if signals of actions are noisy and public, as in Heinsalu (2018) and

Ekmekci et al. (2022). While an explicit use of past play arises when actions are perfectly

observed, sender’s estimates are usually perfect: in Kaya (2009), the sender’s actions are the

only signal available, while in Kremer and Skrzypacz (2007), Daley and Green (2012) and

Kolb (2015, 2019) observable actions are coupled with exogenous public signals of the type.

Private beliefs can nevertheless arise with multisided private information—LQG models

have proven useful in this area, provided the environment has sufficient public information

or symmetry. For instance, Foster and Viswanathan (1996), Back et al. (2000), and Bonatti

et al. (2017) examine settings with multiple informed agents, all of whom learn from a

single imperfect public signal of behavior: past play is used to construct a “residual” signal

about others’ behavior, and hence no higher-order beliefs are needed as states; further, since

learning is symmetric, a muldimensional BVP never arises. Recently, Bonatti and Cisternas

(2020) examine two-sided signaling when firms observe a private signal of a consumer’s

history of past behavior; the prices firms set, however, fully reveal their beliefs.3

With private monitoring, players need to compute distributions over rivals’ histories to

determine their actions. Not only do these histories grow over time, but the resulting distri-

butions vary with a player’s own past behavior (the game’s structure changes after deviations;

see Kandori, 2002). Constructing belief-dependent equilibria is then difficult, so past work—

3Private beliefs can also arise with exogenous private signals of a sender’s type (Feltovich et al., 2002;
Cetemen and Margaria, 2020; Kolb et al., 2021), or if types exhibit correlation (e.g, Cetemen et al., 2023).
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most of which features multi-sided private monitoring but no incomplete information—has

taken different approaches, even looking for mixed-strategy equilibria where beliefs about

histories are irrelevant (e.g., Ely and Välimäki, 2002). Belief-dependent equilibria do arise in

Mailath and Morris (2002), where strategies take a finite-automaton form; players then form

beliefs about those states, but beliefs depend on the observed private histories. Building

on this, Phelan and Skrzypacz (2012) find equilibria by only looking at extreme beliefs of

such states. We also “reduce” the inference problem—to a finite set of real-valued, evolving

states—but we pin down the sender’s incentives at all values of her second-order belief. This

latter state varies with the sender’s own past play, and the fact that it is spanned by the rest

of the states only along the path of play reflects that the game changes after deviations.

Regarding our applications, a distinctive feature of our monetary policy game is the

presence of higher-order uncertainty linked to a monetary authority and a market who learn

about each other’s private information. Instead, Cukierman and Meltzer (1986) and Faust

and Svensson (2001) study discretionary (i.e., sequentially rational) equilibria in which only

a market is gradually learning about the authority’s preferences; Athey et al. (2005) study

full commitment by an authority where revelation mechanisms lead to changes in her pri-

vate information being revealed immediately; and in the decision problem of Svensson and

Woodford (2004) it is an authority that learns from a fully informed market. Other models

featuring two-sided learning are Svensson and Woodford (2003) and Cisternas (2018), but

the source of uncertainty there is common to everyone. Most of these papers are LQG and

have public signals of actions.4 In turn, private signals of behavior in macroeconomic models

usually involve aggregate variables linked to infinitesimal agents: in Woodford (2002) firms

observe private signals of nominal output, while in Amador and Weill (2012) agents see

private signals of aggregate behavior when the information about an economy is dispersed.

Finally, on reputation, Bouvard and Lévy (2019) study a model with quadratic payoffs

and symmetric Gaussian uncertainty in which beliefs are public in the linear equilibrium

studied. And on trading, Yang and Zhu (2020) find that mixed-strategy equilibria can arise

if there is leakage of an informed trader’s behavior; with only two rounds of trading, the

problem of how a player’s own histories are aggregated to forecast a rival’s belief is absent.

2 Model

We develop a linear-quadratic-Gaussian (LQG) framework for analyzing two-player dynamic

signaling games featuring (i) an ex ante informed player whose actions are privately mon-

4The preferences in our monetary policy game coincide with those in the “benchmark case” in Athey
et al. (2005). We thank two referees for pointing to this area of applicability and several of these references.

7



itored by a second player and (ii) a public signal channel from this second player—who

endogenously develops private information in the form of a belief—to the former. Thus, in

these signaling games higher-order beliefs are at play, and private information flows in both

directions. The general model is introduced next; Section 2.2 presents three applications.

2.1 An LQG Class of Games

There are two players, which we label as sender and receiver. They take actions at ∈ R for

the sender and ât ∈ R for the receiver, continuously over a time interval [0, T ], with T <∞.

The sender possesses payoff-relevant private information, which we denote by θ ∈ R and

assume to be normally distributed with mean µ ∈ R and variance γo > 0. At the outset, the

receiver only knows this distribution, and this is common knowledge.

The sender is forward-looking, with her total ex post payoff taking the form

ˆ T

0

e−rtu(at, ât, θ) dt+ e−rTψ(âT ), (1)

where r ≥ 0 is a discount rate, while u : R3 → R and ψ : R → R are quadratic functions, the

latter to accommodate the potential presence of lump-sum terminal payoffs. On the other

hand, the receiver is assumed to be myopic, and thus concerned only about maximizing his

(expected) flow utility in every instant: the receiver’s ex post time-t payoff is denoted

û(at, ât, θ), (2)

with û : R3 → R also quadratic. (Remark 1 below discusses the myopia assumption.)

Turning to the information structure, we assume that, as time progresses, the receiver

has access to a private signal Y of the sender’s actions that evolves as

dYt = atdt+ σY dZ
Y
t . (3)

Here, ZY is a one-dimensional Brownian motion, while σY > 0 is a volatility parameter; the

strict positivity of the latter scalar ensures that Y indeed constitutes private information to

the receiver (otherwise, the sender knows what the receiver has seen; namely, her actions).

Finally, we assume that there is a public noisy signal X of the receiver’s actions given by

dXt = âtdt+ σXdZ
X
t , (4)

where ZX ⊥ ZY is also a (one-dimensional) Brownian motion. Unless otherwise stated, we
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assume σX > 0, which prevents the sender from perfectly inferring the receiver’s belief in real

time. Altogether, the quadratic preferences (1)–(2), linear dynamics (3)–(4), and Gaussian

randomness (θ, ZY , ZX) define a class of LQG games.

To make these games non-trivial, we need to impose some conditions on (u, û, ψ); let

subscripts on these functions denote partial derivatives. We begin with two concavity re-

quirements. First, we assume uaa = ûââ = −1. That is, the players’ utilities are strictly

concave with respect to their own actions, thus ensuring that best responses are well-defined

despite the unbounded action space. That the value is −1 simply amounts to a normalization

of the players’ payoffs, which simplifies our calculations. Second, we assume that ψââ ≤ 0:

this restriction is driven by the applications that we study, which include the case ψ ≡ 0.

The next conditions create sufficient interdependence in the players’ utilities so that

computing higher-order beliefs is needed to determine best responses.

Assumption 1. (i) uaθ ̸= 0 (type sensitivity); (ii) |ûâθ|+ |ûaâ| ̸= 0 (first-order belief sensi-

tivity); and (iii) |uaâ|+ |uââ|+ |ψââ| ≠ 0 (second-order belief sensitivity).

Part (i) is needed for there to be any signaling, while (ii) is needed for the receiver’s action

to be sensitive to his private belief. The latter happens when the receiver cares about the type

either directly (ûâθ ̸= 0) or indirectly through the sender’s action (ûaâ ̸= 0). Part (iii) then

guarantees that the sender’s behavior will explicitly depend on her forecast of the receiver’s

belief. This happens when her utility exhibits a strategic interaction term (uaâ ̸= 0). But it

also happens when u or ψ is nonlinear in the receiver’s action (|uââ|+ |ψââ| ≠ 0).

Condition (iii), or second-order belief sensitivity, is fundamental for being able to depart

from the traditional models studied so far. Indeed, if this assumption is not imposed, the

players’ equilibrium strategies will depend only on first-order beliefs, and the economic in-

sights are rendered standard (see Proposition 1 in the next section).5 Second, related to this

point, in Section 5 we complement (iii) with mild technical conditions that ensure that there

always is information transmission in equilibrium (second-order belief effect included).

Remark 1. The receiver’s myopia is conceptually useful for isolating the impact of a private

signal on the sender’s behavior from a confounding strategic response by the receiver. While

it may seem restrictive, it is not a major limitation for three reasons. First, we set up the

sender’s best-response problem assuming a general receiver. Second, if the receiver solves a

prediction problem, as in our monetary policy and reputation applications, the same equilib-

rium that we find also arises if he is forward-looking (Proposition 8). Third, in Appendix D,

we show how our method for existence can be adapted to this case without major adjustments.

5While the sender still needs to take an expectation over the receiver’s belief, actions do not depend on
it in the equilibrium studied, on or off the path of play. This is because the model becomes largely linear.
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In what follows, we let Et[·] and Êt[·] denote the players’ conditional expectations, and

we use E[·|FX
t ] for conditional estimates that use X but not (θ, Y ), t ∈ [0, T ]. We retain E[·]

(without any subindex or conditioning) for computing averages from an ex ante perspective.

2.2 Applications

We examine three applications: monetary policy, reputation, and trading. The first two

games are under the umbrella of Section 2, while the last is based on an extension. We rely

on the monetary policy example to explain the general model and intuitions when needed.

Monetary policy The following monetary policy game is in the spirit of Kydland and

Prescott (1977) and Barro and Gordon (1983). There is a monetary authority (the sender)

and a private sector, or market (the receiver). Terminal payoffs for the authority are absent

(Ψ ≡ 0) while flow payoffs read as follows (the multiplicative factors deliver uaa = ûââ = −1):

u(a, â, θ) =
1

4

[
−(k + â− a)2 − (a− θ)2

]︸ ︷︷ ︸
monetary authority

and û(a, â, θ) = −1

2
(at − ât)

2︸ ︷︷ ︸
private sector

. (5)

We interpret the authority’s type θ as private information regarding a newly realized shock

to the economy, while at corresponds to the authority’s choice of inflation at t. In turn, û

reveals that ât is always Êt[at], i.e., the private sector’s estimate of current inflation.

A myopic private sector is reduced form for agents who cannot affect aggregate variables;

estimates of inflation matter for the private sector because they are used to set nominal

wages. On the other hand, u is reduced form for an authority who faces an output-inflation

trade off: while it is costly to set inflation away from θ—the second term—doing so can bring

output closer to a target (normalized to zero). This is the first term in u, displaying a Phillips

curve: the unemployment rate, k + ât − at, deviates from its natural level k in the opposite

direction of unanticipated inflation, a− â. Finally, Y as in (3) reflects a private sector that

has access to a signal of inflation not available to the authority. For instance, this can capture

agents in the economy who have imperfect knowledge of how monetary policy transmits to

the economy, or who misinterpret central banks’ actions; such knowledge and interpretations

are inherently private.6 In turn, our public signal X as in (4) resembles survey data that is

periodically gathered by central banks to learn about market expectations.7

6Woodford (2002) stresses the difference between public information and information that individuals
are actually aware of. He models the latter with private signals of aggregate variables like (3). On the other
hand, central banks’ actions, or intentions of actions, may lead to unintended reactions by markets, even if
the goal is not to generate a surprise. See Fisher (2017) on the well-known “taper tantrum” in 2013.

7The public signal could instead be about (true) employment, dXt = (at − ât − k)dt+ σXdZt, featuring
both players’ actions. Section S.4 in the Supplementary Appendix extends our baseline model to this case.
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Assumption 1 clearly holds. In particular, second-order belief sensitivity (Assumption

1(iii)), is satisfied because u exhibits a bliss point with respect to unemployment, leading

to |uaâ| + |uââ| ̸= 0. This means that the authority will need to forecast â—and hence the

market’s estimate of θ, depending on Y—to set inflation. While the public signal X will not

eliminate the higher-order inferences at play, it will make the problem manageable.

A credibility problem is the central tension in monetary policy games like this one. To

illustrate, consider the linear equilibrium of a one-shot (e.g., simultaneous move) interaction:

a =
θ + µ

2
+ k and â = µ+ k. (6)

Averaging across all types, E[k + â − a] ≡ k—i.e., unemployment is unaffected from an

ex ante perspective—while average inflation is µ + k. Yet the commitment solution, ac =
θ+µ
2
, achieves the same average rate of unemployment with inflation of just µ. That is,

the authority may want to lower inflation by k—the static inflationary bias—but creating

surprise inflation is ex post optimal.8 How does the monetary authority manage the market’s

expectations as both parties embark on learning from each other? How do the incentives to

create surprise inflation evolve, and how do they relate to this credibility problem? In terms

of inflation, does it matter that the authority does not know what the market has seen?

Reputation and Trading Briefly, we study two additional examples in Sections 4.2 and

4.3. The first is a reputation game: θ is the intensity of a bias on a relevant issue, while

µ = 0 (a normalization) is interpreted as the unbiased type. The players’ payoffs are

sender:
1

2

[
−
ˆ T

0

e−rt(at − θ)2dt− e−rTψâ2T

]
; receiver: − 1

2
(ât − θ)2,

where ψ > 0. Note that the sender has a long-term concern to appear as unbiased: this is

because the receiver tries to predict the bias at all times, and the sender’s terminal payoff is

maximized when âT = µ = 0. Assumption 1(iii) holds because ψ > 0. Second, to leverage

our methods beyond the baseline model, we consider the following trading game:

sender:

ˆ T

0

[
(θ − E[θ|FX

t ])at −
a2t
2

]
dt; receiver: (θ − E[θ|FX

t ])ât −
â2t
2
,

where E[θ|FX
t ] is the price of an asset of true value θ, based on an “order flow” dXt =

(at + ât)dt+ σXdZ
X
t . That is, the sender now affects the public signal, and there is a “third

Also, θ could be interpreted as a preference parameter of the authority, and k as the authority’s output
target (in this case, with the natural rate of unemployment normalized to zero).

8Hence, (6) is “discretionary.” See Supplementary Appendix Section S.1.6 for the commitment solution.
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action”: prices set by market makers using the public information only. The interaction

term E[θ|FX
t ]at in the sender’s payoff plays the role of uaâ ̸= 0 in Assumption 1(iii). The

sender cares that her actions create information to the receiver not available to price setters.

2.3 Strategies and Equilibrium

Towards a solution concept for our general model, note that the noise terms (ZX , ZY ) in (3)-

(4) have full support, so the players’ actions are hidden from their counterparties. This means

that the only off-path histories for any player are those in which that same individual has

deviated, and hence that imposing sequential rationality does not refine the set of equilibrium

outcomes.9 At this stage of our analysis then, it is without loss to use the Nash equilibrium

concept, and thus leave behavior after deviations unspecified for now.

From this perspective, a pure strategy for the sender specifies, at any time t, an action

at ∈ R as a function of the history (θ, (Xs)s<t). For the receiver, ât ∈ R in turn conditions

on the history (Xs, Ys)s<t, t ∈ [0, T ].10 Due to the Brownian information, some extra reg-

ularity is required: a strategy profile (at, ât)t∈[0,T ] is admissible if each component is square

integrable (so payoffs are well-defined given (X, Y )) and (3)–(4) admits a unique solution (so

the realizations of (X, Y ) are well-defined). We only consider such (pure) strategy profiles.11

Definition 1 (Nash equilibrium). A strategy profile (at, ât)t≥0 is a Nash equilibrium if: (i)

(at)t∈[0,T ] maximizes E0

[´ T
0
e−rtu(at, ât, θ) dt+ e−rTψ(âT )

]
; and (ii) for each t ∈ [0, T ], ât

maximizes Êt[û(at, ât, θ)] when (âs)s<t has been followed.

Given the LQG structure, it is natural to look for Nash equilibria in strategies that are

linear functions of the signals observed by each player. This task, however, is not as simple

as it seems. The difficulty is that the sender will need to evaluate deviations, and at those off-

path histories she will condition on more information than (θ,X): for example, a monetary

authority of any given type will behave differently depending on how aggressively she has

created inflation, even if the data about inflation expectations observed (the history of the

public signal X) is the same. This issue of behavior non-trivially depending on past play

is at the core of our games in that allowing for such an endogenous history-dependence is

9See Mailath and Samuelson (2006), pp. 395-396. With hidden actions, a Nash equilibrium fails to be
sequentially rational only if it dictates suboptimal behavior for a player after her own deviation. Since such
off-path histories are not reached, the same outcome arises if optimal behavior is specified after the deviation.

10Formally, pure strategies are real-valued stochastic processes that are progressively measurable with
respect to the filtrations of the stochastic processes observed. See Chapter 1 in Karatzas and Shreve, 1991.

11Square integrability refers to
´ T
0
a2t dt and

´ T
0
â2t dt being finite in expectation (and thus also the sender’s

payoff). Our equilibrium will satisfy that (3)–(4) admits a unique solution in a strong (pathwise) sense, which
ensures a unique solution in a weak (probability law) sense: there is a unique distribution on C([0, T ])2—the
set of paths of (X,Y )—equipped with the Borelians, that is consistent with the players’ strategies.
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essential for being able to find equilibria. As we show, this complex issue has a parsimonious

resolution when the players think that their counterparties are using belief states linearly.

3 Equilibrium Analysis: Linear Markov Equilibria

3.1 Belief States: Overview and Intuition

Linear Markov Strategies Let us offer a brief overview of our construction. With incom-

plete information, we can look for equilibria where the signals observed by the players are

aggregated into beliefs linked to the sender’s type. Further, due to the quadratic preferences,

the means of such posterior beliefs—henceforth, beliefs—will act as state variables that are

used linearly. In addition to the sender’s type θ, therefore, we will use the following states:

M̂t := Êt[θ], Mt := Et[M̂t], and Lt := E[θ|FX
t ]. (7)

Here, M̂t is the receiver’s belief about θ, which uses the private observations of Y up to t.

In turn, Mt is the sender’s second-order belief, i.e., her belief about the receiver’s first-order

belief. Finally, Lt is the belief about θ for someone who only observes the public signal X.

To illustrate, consider our leading example, u(a, â, θ) ∝ −(k + â − a)2 − (a − θ)2 and

û(a, â, θ) ∝ −(a−â)2. The use of θ by the authority, and hence of M̂ by the private sector, are

obvious. As the authority sets inflation then, she ceases to know how M̂ has departed from

its prior mean µ. But estimating this belief is key to preventing output from becoming too

destabilized from its target level—either because the private sector has misinterpreted the

authority’s actions, or because the inflation surprises have been inadequate. For example, if

the market expects higher types to generate more inflation (â increases with M̂), an authority

who perceives high values of M̂ will fear a drop in employment if these expectations are not

met (recall that unemployment reads k + â − a). This perception, encoded in a high value

of M , will lead to inflationary stimuli partially aimed at stabilizing output. The presence of

the “public state” L relates to the market having to forecast M , discussed shortly.

These beliefs obviously depend on the strategies used by the players. Our focus is on

equilibria in which, on and off the path of play, the players use linear Markov strategies :

at = β0t + β1tMt + β2tLt + β3tθ (8)

ât = δ0t + δ1tM̂t + δ2tLt. (9)

The coefficients βit, i = 0, 1, 2, 3, and δjt, j = 0, 1, 2, will be differentiable functions of time,

a dependence that must be allowed in order to capture end-game and learning effects. For
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example, returning to the credibility problem, the authority may want to take actions to

induce low inflation expectations by the market, and then surprise the latter tomorrow; but

the profitability of this depends on how much time is left to enjoy higher employment.

The sender’s second-order belief Before entering the technical analysis, it is useful to

elaborate on the state M . The starting point is that it will not only depend on the history

of the public signal X (which carries the receiver’s action). Due to the private monitoring, it

will also depend explicitly on the sender’s past behavior; higher past actions indicate higher

realizations of Y , so M is higher for any fixed public history of X. Intuitively, this captures

a monetary authority who actively reflects on her past choices and, combined with data

about inflation expectations, decides how to act. By contrast, if Y were public, the common

knowledge of the receiver’s observations implies thatM ≡ M̂ , so beliefs are fully determined

by the histories of Y—the authority can disregard her past actions to (perfectly) forecast

inflation expectations, because she knows what the market has seen. This distinction is

important, as it has signaling implications. Concretely, since the sender’s actions depend on

her type, and M non-trivially aggregates past actions if Y is not public, a link between M

and θ emerges in equilibrium. That is, there is signaling through the second-order belief.

To analyze these games then, we need two different expressions for M . First, we need

to know how M looks along the path of play of (8)–(9); in particular, its exact dependence

on θ. This is because the receiver must anticipate the total informativeness of the sender’s

actions in equilibrium—i.e., M included—to be able to correctly interpret Y and form his

belief. Lemma 1 in Section 3.2 establishes such a representation of M , which is a backward-

looking expression for this state. Second, to find an optimal strategy for the sender, we need

a forward-looking expression for M under deviations from (8): a general law of motion for

M , capturing how the sender perceives M̂ will respond to arbitrary continuation strategies.

We present this law of motion in Lemma 2 in Section 3.3. Importantly, this dynamic will

depend on the representation derived in Lemma 1, because the sensitivity ofM to the sender’s

actions—inherited from M̂—will depend on the sender’s total signaling as perceived by the

receiver, which includes the dependence of M on θ that arises in equilibrium. In summary,

these two lemmata are crucial for setting up the sender’s best-response problem at the end

of Section 3.3, which we then use to determine the equilibrium coefficients in (8)–(9).

We note that the emergence of a second-order belief non-trivially affecting outcomes only

happens if there is sufficient strategic interdependence, as captured by Assumption 1(iii).

Proposition 1. Suppose that uaâ = uââ = ψââ = 0. In any equilibrium of the form (8)–(9),

β1 ≡ β2 ≡ δ2 ≡ 0: at all histories, the sender’s action is affine in θ and the receiver’s affine

in M̂ . The strategies are also equilibria if Y is public (hence, they are independent of σX).

14



As an example, suppose that the authority’s payoff is linear in employment, i.e., u(a, â, θ) =

−(k + â− a)− (a− θ)2 (i.e., there are no losses from overheating the economy). While the

authority has to construct a second-order belief to forecast â, her flow payoff is linear in that

state. Inflation surprises then trigger an impulse response of employment that is independent

of the level that M takes: the states M and L are never used, so information transmission

is as usual; and changing σX , or even making M̂ public, is irrelevant for outcomes. Away

from this case, the receiver will have to non-trivially forecast M—the “beliefs about beliefs

problem” is then at play, and the need for the public state L will arise, as we explain next.

3.2 Representation of the Second-Order Belief

Representation Suppose that the players follow the linear Markov strategies (8)–(9).

Heuristically, given the LQG structure, it is natural to conjecture the representation

Mt = χtθ + (1− χt)Lt, (10)

where Lt := E[θ|FX
t ] and (χt)t∈[0,T ] is deterministic. Intuitively, to forecast the receiver’s

belief, the sender takes its public estimate E[M̂t|FX
t ]—which coincides with E[θ|FX

t ] by the

law of iterated expectations—and adjusts it based on her own private information stemming

from her past actions, which carry θ under (8). Further, with Gaussian learning, one expects

this adjustment to be linear and deterministic, encoded in the weight χ.

The coefficient χ is a measure of the sender’s learning about the receiver’s belief (relative

to someone who only observes the public signal). Because χ is linked to past play, it is nat-

urally connected to the sender’s past signaling. To quantify total information transmission,

we insert (10) into (8), which yields the sender’s actions along the path of (8)–(9),

at = α0t + α2tLt + α3tθ, (11)

where α0t := β0t, α2t := β2t + β1t(1− χt), and α3t := β3t + β1tχt. (12)

The total weight on the type, α3, is the sender’s signaling coefficient, which is modified by

β1χ due to the higher-order uncertainty. Naturally, as more signaling takes place and the

sender expects the receiver to have learned more about θ, χ must increase in weight. But

how exactly does χ depend on past values of α3? And is α3 the only input to χ?

Our first contribution is to characterize the dependence of χ on the coefficients in the

strategies (8)–(9) via a system of ODEs. To this end, we introduce the posterior variance

γt := Êt[(θ − M̂t)
2], t ∈ [0, T ],
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which is a measure of the receiver’s learning. (We have omitted the hat symbol for notational

convenience. An expression for M̂ is presented in (A.1) in the appendix.) Our approach is

constructive in that we assume that L in (8)–(10) is a generic state that depends only on

the histories of X and time, and confirm that it corresponds to E[θ|FX
t ] under (8)–(9).12

Lemma 1. Suppose that (X, Y ) is driven by (8)–(9) and that the receiver conjectures (10),

where (Lt)t∈[0,T ] throughout is a process that depends only on the public information. Then

M satisfies (10) if and only if: Lt ≡ E[θ|FX
t ] under (8)–(9); χt = Et[(M̂t −Mt)

2]/γt; and

γ̇t = −γ
2
t (β3t + β1tχt)

2

σ2
Y

, γ0 = γo, (13)

χ̇t =
γt(β3t + β1tχt)

2(1− χt)

σ2
Y

− γtχ
2
t δ

2
1t

σ2
X

, χ0 = 0. (14)

Also, 0 < γt ≤ γo and 0 ≤ χt < 1, t ∈ [0, T ], with strict inequalities over (0, T ] if β3,0 ̸= 0.

By the lemma, the weight χ corresponds to the ratio of the players’ posterior variances.

This is not surprising, as the players’ learning is necessarily connected: if the sender has

signaled her type more aggressively, she will expect the receiver to be more certain about

it, so lower values of γ are associated with higher values of χ. Mathematically, the system

of ODEs (13)–(14) is fully coupled (χ affects γ̇ while γ affects χ̇), and higher values of the

signaling coefficient α3 = β3 + β1χ prompt a faster decay of γ and a faster growth of χ.13

The system is a local representation of how the learning coefficients γ and χ are affected

by past values of the coefficients guiding information transmission—in the particular case of

the sender, the weights β3 and β1 on θ and M , respectively, via α3. At t = 0, for instance,

there is no higher-order uncertainty: M = M̂ = L = µ, and so χ0 = 0. But if β3,0 = α3,0 ̸= 0

at that instant—i.e., some signaling takes place then—we have that γt < γo and 0 < χt

at future times, reflecting that some learning has occurred. Conversely, 0 < γt and χt < 1

capture that, with finite signaling coefficients, learning is never complete.

Finally, the last term in (14) shows that δ1, the receiver’s signaling coefficient, is another

input to χ. Indeed, higher values of δ1 improve the informativeness of the public signal, so

the sender favors the public state L over her past history of play in her forecasting exercise:

in the ODE (14), a higher signal-to-noise ratio δ21t/σ
2
X puts more downward pressure on χ.14

12Briefly, the approach is as follows. Given (11) (with L general), the problem of learning θ from Y is
(conditionally) Gaussian (Liptser and Shiryaev, 1977, Theorems 12.6 and 12.7); a stochastic mean (M̂t)t∈[0,T ]

and a deterministic variance (γt)t∈[0,T ] then emerge. The sender’s problem of filtering M̂ using X under (9)
is (conditionally) Gaussian again; here, the mean M will shift with the sender’s history of play for any given
history of X. Imposing that M coincides with (10) when (8) is followed allows us to pin down (χ,L).

13For instance, if σX = +∞ (the public signal is uninformative), the solution to (13)–(14) satisfies χ =
1− γt

γo , so γ and χ are inversely related—see Lemma B.1 in the appendix, and Section 6 for a generalization.
14A law of motion for Lt ≡ E[θ|Ft] is presented in the next section. See also (A.10) in the Appendix.
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Sufficient statistics Our states are sufficient statistics if the players think that the coun-

terparty is using them linearly. The key is that deviations are hidden. In particular, the

receiver always believes that the sender is on path. By construction, the receiver assumes

that the representation (10) holds when he has not deviated. But even if he deviates, he

only affects the realizations of L, which is a function of the commonly observed signal X

exclusively; the receiver then still believes that M is as in (10), given the current value of L.

As the receiver uses L, via (10), to forecast M , the former public state is payoff relevant.

Thus, the sender thinks that the representation always holds from the receiver’s perspec-

tive—even if the sender has deviated because, again, deviations are hidden. This means

that there is common knowledge that the receiver’s third-order belief combines the current

values of M̂ and L linearly, on and off the path of play. The sender’s fourth-order belief will

always be a linear combination between M and L, and we can continue inductively: given

any history of play, (t, θ, M̂ ,M,L) summarize all the higher-order beliefs for our players.

All told, the representation is key for guaranteeing that the state space is “closed” when

each player tries to forecast the other’s private histories. To find the coefficients associated

with those states, however, our players have to optimize at those histories. This is the goal

of the next section, where we examine M under arbitrary strategies.

3.3 The Sender’s Best-Response Problem

Assessing the optimality of (8) requires the sender to evaluate deviations. Unlike with the

receiver, the representation need not hold from the sender’s perspective any more, because

M explicitly depends on her past actions (Remark 2 below). At those off-path histories, her

perception of the continuation game changes: a deviation resulting in a different M than in

the representation leads her to behave differently, even for the same L, so the sender keeps

track of M and L separately—below are their dynamics under arbitrary sender strategies.

Lemma 2. From the sender’s perspective, if she follows (a′t)t∈[0,T ],

dMt =
γtα3t

σ2
Y

(a′t − [α0t + α2tLt + α3tMt])dt+
γtχtδ1t
σX

dZt (15)

dLt =
γXt χtδ1t
σ2
X

[δ1t(Mt − Lt)dt+ σXdZt], (16)

where Zt :=
1
σX

[Xt −
´ t
0
(δ0s + δ1sMs + δ2sLs)ds] is a Brownian motion, and γXt := γt

(1−χt)
=

E[(θ − Lt)
2|FX

t ]. Also, Et[(M̂t −Mt)
2] = γtχt for any such (a′t)t∈[0,T ].

The importance of the second-order belief state is clear from (15)–(16): since the sender’s

actions only enter M , the task of finding an equilibrium is inevitably linked to imposing
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optimality with respect to this state. This justifies our use of an extended strategy such as

(8) involving both M and L as separate states.

The law of motion of M , (15), encapsulates how the sender expects the receiver’s private

belief M̂ to evolve in response to different continuation strategies by the sender. On the

other hand, changes in L matter for the sender’s incentives because the receiver uses this

state to predict M in his third-order belief exercise. To understand why M feeds into L in

(16), suppose that the sender has taken “high” actions in the past: expecting high values

of the receiver’s belief, the sender predicts a gradual rise in L through the channel of the

receiver’s actions influencing X. Our applications will discuss this channel in more depth.

Finally, note that (15)–(16) depend on the learning coefficients (γ, χ) of Lemma 1: for

instance, M responds to the sender’s action in proportion to γtα3t = γt[β3t + β1tχt]. This

dependence originates from the receiver’s learning who uses the representation to form his

mean-variance pair (M̂, γ): more uncertainty (higher γ) or stronger signaling (larger α3)

imply a more responsive M̂ , a property that M inherits. Two observations are in order.

First, the appearance of χ reveals that an equilibrium representation for M is necessary to

set up a best-response problem. Second, while the importance of posterior means is obvious,

posterior variances are critical too. Indeed, much of the complexity behind the fixed point at

play in these games (which we study in Section 5) is due to this variance channel: while (γ, χ)

depends on the signaling coefficients in (8)–(9), this pair also shapes the responsiveness of

(M,L) to the sender’s actions, and so (γ, χ) affects the choice of strategy coefficients too.15

Remark 2 (M and L at all histories). Inserting the definition of Zt in the lemma into

(15) yields a dynamic for M that is linear in the same variable; its solution Mt is linear

in (as, Ls, Xs)s<t. But inserting the same expression for Zt in (16) then yields that Ls is a

linear function of (Xτ )τ<s exclusively. Hence, M is linear in the latter history and past play.

Equipped with these two lemmata, we can set up the sender’s best-response problem.

Recall that the receiver’s action â = δ0 + δ1M̂ + δ2L enters the pair (u, ψ), where the state

M̂ is hidden from the sender. In this LQG world, however, we can simply replace M̂ by M

and optimize: the key is that the sender’s posterior variance, Et[(M̂t −Mt)
2], is invariant

to her deviations (last part of Lemma 2), i.e., changes in the sender’s actions only shift the

receiver’s belief.16 Up to an additive constant, the sender’s problem is to maximize

E0

[ˆ T

0

e−rtu(at, δ0t + δ1tMt + δ2tLt, θ)dt+ e−rTψ(δ0T + δ1TMT + δ2TLT )

]
(17)

15Similarly, the public state L responds to news X in proportion to the receiver’s signaling coefficient δ1
and the variance of θ given the public information, γX , via Cov(θ, dXt|FX

t ) = δ1tχtγ
X
t dt. By Lemma 1,

χ < 1, so L is well-defined. Also, note thatM adjusts upward when a′t > Et[Êt[at]] = Et[α0t+α2tLt+α3tM̂t].
16Formally, Et[u(at, ât, θ)] = Et[u(at, δ0t + δ1tMt + δ2tLt, θ)] +

1
2uââδ

2
1tγtχt, and likewise for ψ at t = T .
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subject to the dynamics (15)–(16) of (M,L) from Lemma 2, and where (γ, χ) follow the

ODEs (13)–(14) from Lemma 1.17 Notably, the history-dependence challenge described in

Section 2—that performing equilibrium analysis requires allowing for deviations, but those

deviations endogenously affecting future play in a non-trivial manner through the inferences

a player makes—has a parsimonious resolution here: one just needs to look at the sender’s

behavior at arbitrary values of (M,L).18

The coefficients (δ0, δ1, δ2) in the receiver’s strategy (9) are fully general thus far, so the

same steps apply irrespective of the receiver’s time preference. In what follows, we focus on a

myopic receiver—the forward-looking case is discussed in Section 6. From this perspective, a

tuple β⃗ := (β0, β1, β2, β3) induces a linear Markov equilibrium (LME) if β0t+β1tM+β2tL+β3tθ

is an optimal policy for the sender when (δ0, δ1, δ2) satisfy the myopic-best reply condition

ât := δ0t + δ1tM̂t + δ2tLt = argmax
â′∈R

Êt[û(α0t + α2tLt + α3tθ, â
′, θ)] (18)

for the receiver. Note that our notion of LME is perfect in that it specifies optimal behavior

after deviations. Further, along the path of the policy, at = α0t+α2tLt+α3tθ by construction,

as required by a (linear) Nash equilibrium. (Unlike with the sender, all the payoff-relevant

histories for the receiver are reachable on path, so the sequential rationality requirement is

covered by the Nash equilibrium concept, as in Definition 1.) We discuss the LMEs that

arise in our applications next; the question of existence of LMEs is relegated to Section 5.

4 Applications

In this section, we examine the three applications introduced in Section 2.2.19 A central issue

is how key equilibrium outcomes change due to the presence of higher-order uncertainty. To

this end, we sometimes compare the LMEs found to those that arise when Y is public, where

M̂ (≡M) is the only evolving belief state used by the players. LMEs in these public cases can

be computed within our model simply by setting σX = 0 in the public signal, as observing

the receiver’s action can allow the sender to recover M̂ . Further, the signaling coefficient

α3 simplifies to β3 in that case: since all sender types agree on the receiver’s belief at all

histories of Y , there is no variation in behavior across types through the belief channel.20

17See the proof of Lemma 2 for the connection with the so-called separation principle in decision problems
with unobserved controlled states (here, M̂): namely, the ability to separate estimation from optimization.

18The admissible strategies for this problem are the R-valued, square-integrable processes (at)t∈[0,T ] that
are (θ,M,L)-progressively measurable; see Pham (2009) and the proof of Lemma 2.

19For general existence conditions for the first two, see Section 5. For the third game, see Remark 3.
20If Y is private, directly setting σX = 0 in our model leads toM = L = M̂ , and hence our LMEs coincide

with those that arise when Y is public (where X is also ignored because it does not have statistical value).
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4.1 Monetary Policy Game Revisited

From Section 2, the relevant payoffs for our players—up to positive factors—are

ˆ T

0

e−rt{−(k + ât − at)
2 − (at − θ)2}dt︸ ︷︷ ︸

monetary authority

and û(at, ât, θ) = −(ât − at)
2︸ ︷︷ ︸

private sector

,

where at is inflation, ât the market’s forecast of it, and k + ât − at the unemployment rate.

It is immediate that output cannot be affected from an ex ante perspective, i.e., averaging

across all possible monetary authority types: E[k+ at− ât] ≡ k holds due to ât = Êt[at] and
the law of iterated expectations. But since the authority’s equilibrium strategy is, for each

type, sequentially rational—i.e., the policy is discretionary—wasteful inflation is created on

average in equilibrium. Figure 1 below plots time paths for the average inflationary bias, ex

ante equilibrium inflation in excess of µ, the average inflation for an authority who is only

concerned about inflation targeting. Our focus will be on this measure of wasteful inflation,

which we depict for different values of σX : larger values of it imply noisier feedback to our

sender and capture environments with larger higher-order uncertainty.

2 4 6 8 10
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0.90

0.95

1.00

Figure 1: Inflationary bias for various values of σX . Parameters: (k, γo, r, σY ) = (1, 1, 1, 1.5).

Three interesting phenomena arise in the figure. First, inflationary biases are lower than

in the static benchmark solution, the horizontal line (except at t = T where myopic behavior

is optimal). Second, and related to the role of higher-order uncertainty, the bias tends to

be higher than in the public case: the dashed lines (σX > 0) are higher than the solid line

(σX = 0). Third, inflationary biases for different values of σX can cross : high values of σX

are associated with large (small) inflationary biases earlier (later) in the game.
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LME coefficients and dynamics The LME supporting these outcomes is as follows.

Proposition 2. Suppose that r ≥ 0 and σX ∈ (0,∞). In any LME, the coefficients satisfy

β1t + β2t + β3t = 1 and α3t := β3t + β1tχt > 0. On the equilibrium path, therefore,

at = β0t + α3tθ + (1− α3t)Lt and ât = β0t + α3tM̂t + (1− α3t)Lt. (19)

Further, there is T † > 0 such that, for all T < T † the following can be shown analytically:

β0t < k for t < T ; β1t, β2t ∈ (0, 1/2) while β3t ∈ [1/2, 1); and α3t ∈ (1/2, 1).21

From (19), equilibrium inflation at preserves the structure of the static equilibrium from

Section 2, astatic = k+ 1
2
θ+ 1

2
µ, albeit with time-varying weights: it is a convex combination

between the type and the public belief about it, plus an intercept. In particular, note that

the intercept (β0t)t∈[0,T ] is the average inflationary bias from Figure 1, as E[at] = β0t + µ.

Towards understanding Figure 1, let us examine the equilibrium coefficients in the LME

from the proposition. It is useful to write the authority’s payoff (up to a constant) as:

2k(at − ât)︸ ︷︷ ︸
stimulus

−(at − ât)
2︸ ︷︷ ︸

output stabilization

−(at − θ)2︸ ︷︷ ︸
inflation targeting

. (20)

The coefficient β0 is linked to the stimulus part in (20). In particular, a forward-looking

authority understands that an inflationary bias as in the static case is dynamically costly:

large inflation surprises anchor the private sector’s belief at higher levels, making it more

costly to boost employment in the future. All types deviate downward from the static bias—

i.e., β0 < k—to dampen M today (a proxy for the market’s current belief), and create more

inflation, at a lower cost, at a future date—i.e., β0 is predominantly increasing. From an ex

ante standpoint, the authority exhibits an apparent greater commitment to low inflation.22

The authority correctly expects lower future inflation costs in this LME because, ex post,

different types do affect outcome variables due to their superior information. This brings us

to the rest of the coefficients, (β1, β2, β3), and how they connect with the remaining terms in

(20). Consider Figure 2. The starting point is that authorities with higher types will choose

higher inflation, so β3 > 0. In response, higher private sector “types” M̂ will set higher

inflation expectations â. But if these expectations are not met, unemployment can grow

(e.g., through excessive wage demands) and higher values of M must then be accompanied

with higher inflation, so β1 > 0. By the same logic, both parties will attach a positive weight

21T † depends on parameters; see discussion after Theorem 1. Numerically, the findings hold beyond T †.
22This type of downward deviation is reminiscent of the ratchet effect. See Cisternas (2018) for an

application to monetary policy symmetric incomplete information where an analogous effect is at play.
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to L: high values of L indicate high values of M again, ultimately leading to β2 > 0.23
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Figure 2: The sender’s strategy coefficients, for (k, r, γo, σX , σY ) = (1, 1, 1, 2, 1.5).

Altogether, high market beliefs about θ bring high inflation expectations, which in equi-

librium are self-fulfilling. Inflation then becomes costly to the authority in this case, because

it must be set far from θ. A forward-looking authority would like to guide the market in the

direction of θ and, as this happens, surprise it with higher inflation tomorrow (via β0), when

it is cheaper to do so. Note that this guiding motive is captured by the last two terms in

(20), as setting a = â = θ in them eliminates any potential losses for the monetary authority.

In equilibrium, this guiding motive has a clean representation: the weight attached to θ in

the extended strategy is larger than in the static case, β3 > 1/2, capturing that the authority

tries to convey her type more aggressively through this channel in order to steer M̂ toward

it. Further, as more time remains in the game, it is more profitable to stick to inflation

targeting—i.e., β3 is decreasing—because there is more time to enjoy the lower future costs

of inflation. In the process, however, output dynamics arise due to a− â = α3(θ − M̂) ̸= 0,

but output volatility is costly (output stabilization term in (20)). The fact that the total

signaling coefficient α3 is less than 1 reflects the authority’s concern about surprising the

market too much in this guiding process, as the signals observed by the private sector are

imperfect, and hence can destabilize output.

The classic credibility problem has a neat dynamic manifestation here. The authority

demonstrates both transparency and restraint early on, understood as carefully guiding the

market’s belief towards its true type and generating little wasteful inflation, respectively.

But as she succeeds in transmitting her private information, her ability to exercise restraint

becomes compromised.

23Because output and inflation have equal weights in (20), overweighing the importance of the type comes
at the cost of the coefficients in the rest of the states, so β1 + β2 + β3 ≡ 1.
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Higher-order uncertainty We now turn to examining how the presence of higher-order

uncertainty affects the inflationary bias β0. To do so, it is useful to consider the case in which

Y is public, where the LME is at = βpub
0t + βpub

3t θ + (1 − βpub
3t )M̂t and ât = βpub

0t + M̂t.
24

From the authority’s perspective, the contrast is between inflation expectations of the form

β0t + α3tMt + (1− α3t)Lt︸ ︷︷ ︸
= Et[ât], when σX>0

versus βpub
0t + M̂t︸ ︷︷ ︸

= ât, when σX=0

.

The problem of forecasting others’ forecasts has the “direct” effect of making market expec-

tations less sensitive to the authority’s actions: the weight δpub1 ≡ 1 attached to M̂ in the

public case (right term) is now split into a weight δ1 = α3 on M—the state that is directly

controlled—and a weight of δ2 = 1 − α3 attached to L—a state that updates more slowly

because it is only indirectly controlled via inducing changes in the receiver’s action. (Note

the importance of the receiver’s signaling—encoded in δ1—for this finding.)

Thus, all else equal, market expectations tend to become more sluggish. As a result,

creating inflation surprises become less costly from a dynamic perspective, and the incentive

to deviate downward from the static solution is weakened. The tangible consequence of the

beliefs about beliefs problem is that a higher inflationary bias is likely to arise.

Proposition 3. Fix r > 0 and σX > 0. (i) There is T † > 0 (depending on parameters),

such that for all T < T †, β0 is uniformly higher than its counterpart βpub
0 over [0, T ). (ii) If

r = 0 and σX = +∞, β0 is higher than the public counterpart for all horizons T > 0.

From the proposition, higher inflationary biases are guaranteed if there is sufficient im-

mediacy and/or higher-order uncertainty: in both cases, the authority manages market

expectations mainly through influencing M , the channel that has a more immediate—but

now reduced—response. For instance, given any degree of non-trivial discounting, we can

always find meaningful horizons such that the public channel L is not able to compensate

the reduced sensitivity of â to M . On the other hand, the extent of higher-order uncertainty

faced by the authority is maximized if σX = +∞: the public state L naturally becomes µ,

and hence cannot be affected. In this case, the inflationary bias is higher for all horizons,

even if the authority is patient.25

But there are indirect effects too: varying the degree of higher-order uncertainty faced by

the authority affects her signaling. Due to this second channel, the time paths for inflationary

bias can cross as σX varies. To this end, consider Figure 3 below, depicting the total signaling

coefficient α3 := β3 + β1χ for various values of σX :
24We establish this in Proposition S.1 in the Supplementary Appendix. See also Appendix B.2 here.
25If σX = +∞, the reliance on past play is maximized. The representation (10) holds with L ≡ µ, while

the ODEs (13)–(14) for (γ, χ) in Lemma 1 simplify dramatically. See Lemma B.1 in Appendix B.
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Figure 3: Sender’s signaling coefficient as σX varies. Other parameters: (k, γo, r, σY ) = (1, 1, 1, 1.5)

From the plot, the signaling coefficient is decreasing for the most part when σX is low

(e.g., σX = 0.1), while the opposite occurs when σX is large (e.g., σX = 2). In the former

case, there is mild higher-order uncertainty, so β3 dominates in α3; but as argued, the

“guiding motive” weakens over time. At the other end, the extent of signaling through the

second-order belief channel, β1χ, dominates. Indeed, as higher types create more inflation

(β3 > 0), their past behavior will lead them to expect higher market beliefs, i.e., to develop

high values of M . To stabilize output, these types will now create even more inflation

(β1 > 0), effectively amplifying the separation of types. This effect builds up over time as

M increasingly reflects the type in the representation (10) and the guiding motive decays

(both χ and β1 grow over time).

As σX increases, L becomes more sluggish, and so M becomes the main channel to guide

the market. However, with a reduced sensitivity of Et[ât] to Mt (the direct effect) this task

becomes harder for all types: early in the game, β3 falls more and more below the public

case (i.e., closer to the myopic solution)—see Figure 3 close to t = 0, where α3 ≈ β3. Large

degrees of higher-order uncertainty are then associated with weaker signaling, hence with

less sensitive expectations, and ultimately a larger inflationary bias. As time progresses,

things reverse: our new form of signaling builds up, expanding the wedge in information

transmission at high versus low values of σX , as Figure 3 shows. Inflation expectations â

gain more sensitivity when σX is large, and hence lower (in relative terms) inflationary biases

arise later in the game, as Figure 1 shows after t = 6. We can formalize this crossing of

the signaling coefficients by comparing two settings with minimal and maximal higher-order

uncertainty: σX ∈ {0,+∞}. We exploit the analytical solutions when r = 0 for comparisons.

Proposition 4. Suppose that σX ∈ {0,+∞}. Then, an LME exists for all T > 0 and r ≥ 0.

Further, if r = 0, it can be shown analytically that the signaling coefficient in the public case

is higher (lower) at t = 0 (t = T ) than its counterpart for σX = ∞.
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The crossing of signaling coefficients for interior, extreme opposite, levels of σX then

follows by continuity—that this crossing occurs before the β0 coefficients cross is because,

when σX is large, the contribution of α3 to the sensitivity of inflation expectations needs to

build up to offset thatM itself has become less responsive to due to the receiver’s learning.26

In conclusion, the logic that higher-order uncertainty leads to more sluggish beliefs can

then be challenged if the signals used endogenously become more informative. The two-sided

learning aspect of our game and the presence of agents who can affect signals are key.27

4.2 Application 2: Reputation for Neutrality

Recall the following payoffs (up to positive factors so that uaa = ûââ = 1):

sender: −
ˆ T

0

e−rt(at − θ)2dt− e−rTψâ2T , receiver: − (ât − θ)2,

where ψ > 0. The sender (e.g., a politician or expert) has a bias θ on a relevant issue;

the prior mean—set to µ = 0 for notational convenience—captures an unbiased type. The

sender finds it costly to take actions away from her type (−(at − θ)2 term) but she benefits

from appearing as unbiased at a terminal time T ; this is because the receiver is predicting

the sender’s bias (i.e., at = M̂t at all times) and when âT = M̂T = µ = 0 there is no terminal

loss. The receiver could be a news outlet that gets private signals Y of the sender’s behavior

and that reports its perception of the bias;28 the reporting process X is imperfect, but fair

on average (the shocks have zero mean)—and naturally public.

Does having access to better information, as measured by a more precise signal X, benefit

this career-concerned agent? Clearly, one advantage of more precise information is that

actions can be better tailored to one’s reputation. Let us first look at the LME of this game.

Proposition 5. Suppose that r ≥ 0 and σX ∈ (0,∞). In any LME, the sender’s strategy

satisfies β0t = 0 and β1t, β2t ≤ 0 < β3t ≤ 1 for all t ∈ [0, T ], with all inequalities strict over

[0, T ), while ât = M̂t (i.e., δ1 ≡ 1 and δ0 ≡ δ2 ≡ 0). Moreover, α3t := β3t + β1tχt ∈ (0, 1).

26By Proposition 3, the crossing of the inflationary biases for σX = 0 and +∞ becomes degenerate, in
that it is backloaded to t = T . Also, the non-monotonicity of α3 for σX ∈ (0,+∞) is the net effect of the
guiding motive and the signaling through M moving in opposite direction: the proof of Proposition 4 shows
that the signaling coefficient is decreasing when σX = 0 and increasing when σX = ∞. The non-monotone
pattern of β0 in some plots is a consequence of this non-monotonicity of α3, via the same sensitivity logic.

27Higher-order uncertainty instead leading to lower (higher) inflation earlier (later) on can happen for low
r and σX . Indeed, with a precise public signal, the players rely heavily on L. A patient monetary authority
can then manage inflation expectations through this state early on, which is more sensitive as δ1 = α3 grows;
but as time progresses, M gains more immediate prominence, and we fall into the domain of Proposition 3.
The logic, however, applies for settings close to public, and hence the differences in inflation are small.

28Actions such as voting, contributions, favors, statements to groups of influence, etc. often have a private
nature, and hence are likely to be leaked with error, justifying the noise in Y .
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Figure 4: Sender’s strategy coefficients in the reputation game: (ψ, γo, r, σX , σY ) = (1, 2, .1, 1, 1).

To understand these coefficients, consider Figure 4. First, if the sender were myopic,

she would attach a weight of 1 to θ at all times, precisely the terminal value of β3. The

sender then deviates from this value at earlier times in an effort to manage her reputation.

Specifically, from a time-t perspective, her reputational concerns are captured by

−e−r(T−t)ψEt[M̂2
T ] = −e−r(T−t)ψ(Et[M2

T ] + χTγT ), (21)

where χTγT is the variance of the sender’s second-order belief (Lemma 2). Two conclusions

immediately follow. First, since higher types take higher actions (α3 > 0) due to their higher

biases, these types will anticipate greater upward drift in their reputation M all else equal.

To preempt a large terminal loss, the sender moderates her actions, resulting in β3t < 1

until time T ; this deviation is stronger earlier in the game, as more time is left to reap the

benefits of it. Second, senders with (from their perspective) biased reputations Mt expect to

be perceived as biased at the end, so they will attempt corrective actions early on: the weight

β1 onM is negative so as to prevent this state from growing. And sinceMt becomes a better

predictor of MT as time progresses, such corrections becomes stronger: β1t is decreasing.

It is noteworthy that L is used in the strategies despite never appearing in the players’

payoffs. To see why, recall that, via the representation, high values of L indicate to the

receiver that M is high, and hence that a strong correction (or low dY ) should be observed.

If the sender does not meet the receiver’s expectations, the sender predicts that her reputation

will deteriorate upwards. The case θ = 0, at an off-path history where Mt = 0, illustrates

this issue: despite being truly unbiased, and also believing she is perceived as such, this type

chooses at = β2Lt (which is negative if Lt > 0) because she expects to be perceived as biased

tomorrow otherwise. As this predictability ceases to matter at T , β2T = 0 in Figure 4.

Second-order belief and concealment As more extreme types take more extreme ac-

tions in equilibrium, they will also develop more extreme second-order beliefsM ; hence, they
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will correct their reputations more aggressively than less extreme types. Our new signaling

channel now goes against information transmission: β1χ and β3 have opposite signs. But

this creates scope for less separation, and hence a better chance to conceal the bias. A subtle

trade-off emerges: with higher-order uncertainty, the sender loses her ability to take the best

actions to manage her reputation, but she may transmit less information in the first place.

Conversely, in a public setting, the sender can perfectly tailor her actions to her reputation,

but types do not separate through their beliefs. To make our point, we examine the cases

σX = 0 and σX = +∞ when r = 0, which are analytically simple.

Proposition 6. Suppose that r = 0 and ψ < σ2
Y /γ

o. For all T > 0, there is a unique LME

for σX ∈ {0,+∞}. The sender’s ex ante payoff is higher when σX = +∞ than when σX = 0.

Our career-concerned sender can benefit from being uncertain about how she is perceived

when ψ < σ2
Y /γ

o. Otherwise, changes in beliefs are costly (large ψ, due to an acute concav-

ity), or beliefs themselves change frequently (due to a large initial uncertainty γo or more

informative Y signal), which increases the “better tailoring” benefit of more precise feedback.

4.3 Application 3: Trading and Leakage

Consider a public signal of the form dXt = (at + ât)dt+ σXdZ
X
t , and payoffs

sender:

ˆ T

0

[
(θ − E[θ|FX

t ])at −
a2t
2

]
dt; receiver: (θ − E[θ|FX

t ])ât −
â2t
2
.

The sender is an informed trader who knows the fundamental value θ of an asset, and who

submits a market order for at shares at t. The the receiver is an ex ante uninformed investor

who sees a leakage Y of the sender’s trades, and submits orders labeled by ât, t ∈ [0, T ].29

The term E[θ|FX
t ] corresponds to the asset’s price at time t, based on the public total order

flow X, as in Kyle (1985). Thus, (θ − E[θ|FX
t ])dt captures the trading gains for each unit

bought over [t, t+ dt), while a2t/2 and â2t/2 encode other types of transaction costs.30

Remark 3. Note that the public signal also carries the sender’s action. Our analysis from

Sections 2–3 can be extended to this more general case because a representation for M analo-

gous to Lemma 1 continues to hold. Thus, we can examine games featuring a “third action”

coming from a player who only sees X (here, market makers who set a price E[θ|FX
t ] for the

asset); note that, because of the representation, this is also true in the baseline model. See

29Yang and Zhu (2020) argue that, by handling retail order flow (proxy for noise trading), proprietary
trading firms can construct private signals of institutional investors’ (proxy for informed traders) behavior.

30E.g., taxes from trades (Subrahmanyam, 1998). Additional costs from large “long” positions also arise
from limited resources within a fund; and on the “short” side, due to the use of brokers for borrowing shares.
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Supplementary Appendix Section S.4, where we: extend our model to both players affecting

X; present the proof for the proposition below; and establish an existence result for this game.

In models of this kind, a key question is how the sender exploits the mispricing θ − L

accounting for how her trades affect future prices. Here, such trades also generate private

information for others. The following proposition characterizes the structure of any LME.

Proposition 7. Suppose σX ∈ (0,∞). In any LME, β0t = 0 and β1t + β2t + β3t = 0. Thus,

along the path of play, at = α3t(θ−Lt) with α3t > 0, while the receiver follows ât = M̂t−Lt.

Finally, the equilibrium price satisfies dLt = Λt dXt where Λt :=
γXt (α3t+χt)

σ2
X

.
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(c) Price impact as σY varies.

Figure 5: Trading game: (γo, r, σX) = (1, 0, 1).

As higher sender types expect a larger profit per unit traded, the equilibrium weight on

the type β3 is positive. At the same time, all types scale back their purchases as the price

increases, and so β2 < 0. Further, as the endgame approaches and the concern about future

prices fades, β3 and β2 move toward the myopic solution (β3T , β2T ) = (1,−1) monotonically—

see Figure 5a.31

As is usual, the sender’s equilibrium trades are based on the size of the current mispricing

via α3(θ − Lt), with α3 > 0 also shaping the responsiveness of prices via Λ; in other words,

endogenous price impact makes it costly for the sender to place large trades. What is novel is

how the presence of private monitoring affects the form that price impact takes, which brings

us to the important role that β1 plays. To illustrate, suppose that the sender has deviated

by trading more aggressively, resulting in a higher M than implied by the representation

(10). In practice, this means that the sender thinks that the receiver is optimistic about

the asset, and that this optimism will eventually get incorporated into prices: the persistent

state M enters the law of motion for the price L (just as in the law of motion (16) for L in

our baseline model). That is, an extra layer of price impact emerges.

31As usual, we can sign coefficients for horizon lengths that depend on parameters: β1t > 0, β3t ∈ (0, 1),
and β2t < 0; while dα3t

dt > 0, dβ3t

dt > 0, and dβ1t

dt < 0. See Supplementary Appendix Section S.4.4.
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This additional layer is a form of price predictability that can be exploited by the sender.

Indeed, using β1t + β2t + β3t = 0, her extended strategy reads at = β3t(θ − Lt) + β1t(Mt −
Lt), thus capturing that the sender exploits both forms of superior information relative to

market makers (who believe E[M̂t|FX
t ] = Lt); that β1 > 0 reflects an incentive to buy more

aggressively in anticipation of higher future prices, an effect that decays over time (β1T = 0)

(also in Figure 5a). A sequentially rational trader recognizes that any individual trade now

carries more price impact: Λ in the proposition features β3 augmented by β1χ+δ1χ = β1χ+χ,

the sender’s signaling through M plus the receiver’s own trades.32 The trader then slows

down her purchases for fear of high future prices, and α3 falls below the “no-leak” benchmark

case σY = +∞ (in which the receiver does not trade at all)—see Figure 5b. In turn, in the

same figure, the order flow’s informativeness (sender and receiver combined), α3 + χ, is

depicted in dashed: it is low early on due to the sender’s reduced signaling, but it builds up

as the contribution of χ grows over time.

The implication is that price impact Λ begins below the no-leak counterpart, but even-

tually surpasses it, as shown in Figure 5c. This time pattern highlights the role of the

endogenous correlation of the player’s private information, via the receiver’s endogenous

type. Alternatively, when such correlation is exogenous (because the players’ private in-

formation itself is, as in Foster and Viswanathan, 1996; Back et al., 2000) price impact is

initially high if correlation is positive, due to intense competition early on.33

5 Existence of Linear Markov Equilibria

In this section we show that the problem of finding LMEs is effectively one of solving a

system of ODEs with a mix of initial and terminal conditions—a “boundary value problem”

(or ‘BVP’). We provide time horizons for which such a problem admits a solution.

Setting up a BVP We postulate a quadratic value function for the sender of the form

V (θ,m, ℓ, t) = v0t + v1tθ + v2tm+ v3tℓ+ v4tθ
2 + v5tm

2 + v6tℓ
2 + v7tθm+ v8tθℓ+ v9tmℓ,

32The appearance of χ multiplying δ1 ≡ 1 stems from Cov(M̂t, θ|FX
t ) = χtγ

X
t from the perspective of

market makers, as they must also use the representation to construct a (second-order) belief about M̂ .
33It is possible to show that there is a non-zero measure of times at which Λt > Λno leak

t ; see Section S.4.4
in the Supplementary Appendix. Also in that section, numerical calculations show that the hump-shaped
pattern for Λ remains such if the receiver is forward-looking—the fall in Λ is due to the increased market
maker’s learning (i.e., γX falling) eventually dominating when quadratic costs bound the intensity of trades.
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where vi·, i = 0, ..., 9 are differentiable functions of time. We can then write the Hamilton-

Jacobi-Bellman (HJB) equation for the sender’s problem: for all t < T ,

rV = sup
a′

{
ũt(a

′,Et[ât], θ) + Vt + µM(a′)Vm + µLVℓ +
σ2
M

2
Vmm + σMσLVmℓ +

σ2
L

2
Vℓℓ

}
, (22)

where ũt(·) := u(·) + 1
2
uââδ

2
1tγtχt (due to Et[M̂2

t ] = Et[M2
t ] + γtχt by Lemma 2) and where

µM(a′) and µL (respectively, σM and σL) denote the drifts (respectively, volatilities) in

(15) and (16). Note that, via ũ and (µM , µL, σM , σL), (22) implicitly depends on a tuple

β⃗ := (β0, β1, β2, β3) used by the receiver to form beliefs about the sender and construct his

best response ât (as in (18)). Also, (µM , µL, σM , σL) depend on (γ, χ) (see (15)–(16)).

Let a(θ,m, ℓ, t) denote the maximizer in (22). The first-order condition (FOC) reads

∂u

∂a
(a(θ,m, ℓ, t), δ0t + δ1tm+ δ2tℓ, θ) +

γtα3t

σ2
Y︸ ︷︷ ︸

dMt/dat

[v2t + 2v5tm+ v7tθ + v9tℓ]︸ ︷︷ ︸
Vm(θ,m,ℓ,t)

= 0, (23)

which is linear in a(θ,m, ℓ, t) and (θ,m, ℓ). Solving for a(θ,m, ℓ, t) in (23) and imposing

the equilibrium condition a(θ,m, ℓ, t) = β0t + β1tm + β2tℓ + β3tθ yields a linear equation in

(θ,m, ℓ). We then impose that the terms attached to these variables on each side, and the

constants, coincide, allowing us to link β⃗ with (v2, v5, v7, v9). At this point, one can always

obtain a system of ODEs for vi, i = 0, ..., 9 using the HJB equation. But there is a reduction:

1. We can instead solve for (v2, v5, v7, v9) as a function of β⃗ and (γ, χ) (see (C.1)-(C.4) in

the Appendix); the associated mapping is well-defined provided that α3 and γ never

vanish, which will be the case in the equilibrium we construct (more in this shortly);

2. We can then insert the resulting expressions into (22), along with a(θ,m, ℓ, t) = β0t +

β1tm + β2tℓ + β3tθ, to obtain a system of ODEs for (β0, β1, β2, β3) and the remaining

coefficients in V . These ODEs are coupled with those of (γ, χ) because this pair shapes

the law of motion of (M,L). The resulting system of ODEs can be further reduced by

eliminating (v0, v1, v3, v4, β0) which are “downstream” of the remaining variables.34

This procedure yields a system of ODEs for (β1, β2, β3, v6, v8, γ, χ); see Appendix C.35 To

this system we add boundary conditions. First, γ and χ satisfy exogenous initial conditions

34Note that (v0, v1, v4) are the coefficients of the constant, θ- and θ2-terms in the sender’s value function,
none of which the sender controls, so they have no impact on the rest of the system. Meanwhile, the equations
for (β0, v3) are coupled as these encode the deterministic component of the sender’s incentive to manipulate
beliefs, which by definition is independent of the values that the beliefs take.

35We present the system after a change of variables that simplifies the ODEs. The fact that v6 and v8
cannot be eliminated is a consequence of the sender indirectly affecting L via changes in M (see (16)).
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γ0 = γo > 0 and χ0 = 0 capturing the players’ uncertainty at t = 0. Second, the remaining

variables satisfy endogenous terminal conditions determined by the (Bayes) Nash equilibrium

of the static game of two-sided incomplete information that takes place at time T . If there

are no terminal payoffs (i.e., ψ ≡ 0), these conditions read as

β0T =
ua0 + uaâûâ0
1− uaâûâa

, β1T =
uaâ[uaθûâa + ûâθ]

1− uaâûâaχT
, β2T =

u2aâûâa[uaθûâa + ûâθ](1− χT )

(1− uaâûâa)(1− uaâûâaχT )
,

β3T = uaθ, v6T = v8T = 0, where ux0 := ux(0, 0, 0) and ûx0 := ûx(0, 0, 0), x ∈ {a, â}.
(24)

This fully specifies a BVP that the coefficients (β1, β2, β3, v6, v8), along with (γ, χ), must

satisfy in a LME. (See Section S.3.2 in the Supplementary Appendix for the case ψ ̸= 0.)

Towards establishing the existence of LMEs, we state technical conditions on primitives.

Technical conditions We require that the aforementioned static terminal game always

admits an equilibrium: in (24), all the denominators must be different from zero after every

possible history of the game, encoded in the possible values that χT can take. Thus, we need

uaâûâa < 1. The idea is that the sender’s best-response is linear in â with slope uaâ, while the

receiver’s counterpart has slope ûâa on a (due to uaa = ûââ = 1); with complete information

then, the players’ best responses would (generically) never intersect if uaâûâa = 1. Due to

the higher-order inferences, however, it is 1−uaâûâa and 1−uaâûâaχT that can never vanish:

since χT ∈ [0, 1) by Lemma 1, we deduce that the best-response functions always intersect

when 1− uaâûâaχT never changes sign, and so we require that uaâûâa < 1.

Second, we will look for equilibria in which the sender always signals her type in equi-

librium. As it turns out, a sufficient condition for the total signaling coefficient α3 to never

vanish is that its terminal value, α3T , is non-zero after all possible histories of the game.

With the aid of (24) then, we require that

α3T := β1TχT + β3T =
uaθ + uaâûâθχT
1− uaâûâaχT

must never vanish.36 Since χT ∈ [0, 1) for all histories of play, the numerator will never be

zero if uaθ and uaθ + uaâûâθ have the same sign. Our technical conditions are:

Assumption 2. Flow payoffs satisfy (i) uaâûaâ < 1 and (ii) uaθ(uaθ + uaâûâθ) > 0.

36That α3T ̸= 0 implies that α3 does not change sign is established in the proof of our main theorem. Since
sender’s actions read α0+α2L+α3θ along the path of play, it is easy to conclude that an α3 that never changes
sign implies that higher types do hold higher second-order beliefs in equilibrium. (While higher types do take
lower actions if α3 < 0, the weights thatM attaches to past actions are then negative, and the same conclusion
holds.) Note that the receiver can suspend information transmission, when δ1 = ûâθ + ûâa[β3t + β1tχt]
vanishes: the sender simply ignores X, while M updates via her play. Such a suspension is only temporary
due to (β1, β3) changing over time—and it can never happen if exactly one of (ûâθ, ûâa) is zero.
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Existence of LME Establishing the existence of a solution to the BVP is nontrivial not

only because solutions to the ODEs must exist over the whole time horizon, but also because

they must land at potentially endogenous values. This issue is challenging when there are

multiple ODEs in both directions: the “behavior” ODEs for (β⃗, v6, v8) are traced backward

from their terminal values by backward induction, while the “learning” ODEs for (γ, χ)

are traced forward from their initial values. In BVPs with only one ODE going in one

of the directions—say, forward—a traditional one-dimensional shooting argument applies:

introduce a guess variable for the candidate (unknown) terminal value of that forward ODE,

then trace all variables backward in time using that guess variable as the initial condition,

and argue via the intermediate value theorem that some guess hits the target (the exogenous

initial condition). With multiple ODEs in both directions, this method does not apply.37

Our core problem of existence of LME, however, is a fixed-point one, which we already

anticipated: the learning coefficients (γ, χ) depend on the signaling that takes place during

the game, but the signaling coefficients depend on the learning counterparts because they

affect (M,L) in the sender’s problem. Our approach exploits this logic by constructing a

fixed-point problem over candidate coefficients as functions over [0, T ]. We first explain how

this infinite-dimensional approach works, and later elaborate on its convenience.

Begin with an arbitrary pair λ := (γ, χ) that proxies for solutions to the learning ODEs.

We require this pair to live a closed-convex domain Λ that nests all functions (γ, χ) that can

be obtained as solutions to their coupled ODEs (13)–(14) for continuous (β1, β3) satisfying

a particular uniform bound. Equipped with λ, we “shoot back”: we pose an initial-value

problem in time-reversed form consisting of the ODEs for (β⃗, v6, v8) taking λ as an input, and

where the initial conditions for the ODEs are given by the static time-T conditions of the

game (which may depend on λT ). We then derive a sufficient condition on the time horizon

such that: (i) this initial-value problem has a unique solution for all λ ∈ Λ; (ii) the solution

satisfies the uniform bound referred to above (we expand on this after the theorem); and (iii)

the solution is continuous in λ. We then “shoot forward”: we feed the resulting (β1, β3) pair

into the learning ODEs for (γ, χ) to get a solution for this system that we denote λ. As we

prove, this two-step procedure delivers a mapping λ ∈ Λ 7→ λ ∈ Λ that is continuous, and

Schauder’s infinite dimensional fixed-point theorem applies. By construction, the fixed-point

coefficients found induce an LME. Figure 6 illustrates one iteration of this procedure.

We can now state our main theorem, which guarantees existence of LME for time horizons

that are robust to the discount rate, for the entire class of games. Recall that ψ(·) is the

sender’s terminal payoff, which depends on the receiver’s terminal action.

37Special cases for which the one-dimensional shooting is applicable are discussed in Section 6.
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Figure 6: One iteration of our method (reputation game). Start with the dotted curves that point
right, capturing learning coefficients. With these, generate candidate equilibrium coefficients, in
red pointing left. Use the latter to generate solutions to the learning ODEs in solid pointing right.

Theorem 1. Suppose Assumptions 1 and 2 hold. If ψ is linear (including ψ ≡ 0) or ψ is

not too concave, there exists a scalar C > 0 independent of (r, γo) such that, if T < C/γo,

there exists an LME for all r ≥ 0. In this equilibrium, α3 never vanishes.

To understand why the horizons found are proportional to 1/γo, recall that the receiver’s

belief is less responsive to new information as γ falls and learning progresses. With less

responsive beliefs, the sender’s incentives to deviate from myopic behavior decrease. The

ODEs for the behavior coefficients (β⃗, v6, v8) are thus proportional to γ, thereby limiting the

growth of any solution. Hence, as γo falls, we can find longer time horizons over which such

solutions can be uniformly bounded, which guarantees their existence. (This also applies to

the times T † in Propositions 2 and 3, i.e., they expand as γo falls.) As for the concavity

condition, a non-trivial terminal payoff can make the static Nash equilibrium at T more

complex due to “last minute” incentives. A technical lower bound on the second derivative

of ψ then allows us to extract a sufficiently regular selection of static equilibria for all possible

(χT , γT ) over [0, 1]× [0, γo], which we need for continuity reasons. This lower bound depends

on parameters, and sometimes it never binds (our reputation game being an example).

While Theorem 1 is obviously very general, it is natural to ask why we use an infinite-

dimensional approach. Interestingly, the reason relates to the economics of the problem:

behavior is determined via backward induction, while Bayesian updating naturally evolves

going forward. In the BVP, these properties materialize in two ways. First, it is only when

the behavior ODEs are traced backward that greater discounting limits their growth; we

exploit this to find times for existence that apply for all r ≥ 0. Second, the learning ODEs

always admit solutions if traced forward, but not necessarily backwards from generic values.

To leverage this structure then, only the forward or backward component of the system of
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ODEs must be used in each “shooting” step, which means that candidate solutions for the

remaining ODEs are needed as inputs. With functions needed as inputs, the approach must

be infinite dimensional, beginning with either the forward or backward component.

Finally, all the steps in this existence technique can be refined: we can include more

general terminal payoffs; obtain tighter uniform bounds (we only use the degree of the

polynomials involved); and potentially find horizons of existence that increase with the

discount rate (because behavior must be closer to myopic as r increases, and an LME for

myopic players exists for all T by Assumption 2).38 In the next section, we discuss this

method in light of the existing literature and identify areas for future applicability.

6 Discussion

Forward-looking receiver If the receiver is forward-looking, the states (t, M̂ , L) are still

sufficient for him. However, since he can actively control L via his actions influencing X, his

incentives may change relative to the LME that we have found.

Importantly, this does not occur in our first two applications. To see why, consider the

monetary policy game, and suppose that the private sector deviates from its myopic best

response Êt[at] over [t, t + dt). By doing so, it incurs a loss over that instant. To see that

there is no future gain, observe that since the deviation is hidden, the market continues

thinking that the authority takes actions according to α3θ + (1 − α3)L; in this expression,

only L is affected by the deviation because α3 is deterministic. In other words, the private

sector has not improved its ability to predict at at future times, which is what it cares about:

the informativeness of Y , via α3, is unaffected, while the state L is always observed anyways.

The same logic applies to the reputation game, and more generally to prediction problems.

Proposition 8. Suppose that û(a, â, θ) = −1
2
(c0 + c1θ + c2a − â)2, with c0, c1, c2 ∈ R, and

that an LME in our baseline model exists. Then, for all r̂ ≥ 0, the same LME arises when

the receiver has the payoff
´ T
0
e−r̂tû(at, ât, θ) dt+ e−r̂T û(aT , âT , θ).

Beyond these settings, non-trivial dynamic incentives can arise. The most relevant per-

tain to the receiver’s incentives to manipulate the sender’s belief via “jamming” L; but since

the latter state is a publicly observed belief, these incentives are well-understood (Holmström,

1999). Crucially, our methods can be adapted to study the case of a general forward-looking

receiver, which we discuss in detail in Appendix D. In a nutshell, while no additional learn-

ing ODEs would arise, the “backward part” of the BVP would have to be augmented with

38To find horizons that apply for all r ≥ 0, we perform two modifications to the BVP before constructing a
fixed point. For expositional ease, we defer a detailed explanation of those modifications and the underlying
motivation to the proof in Appendix C (see ‘Centering’ and ‘Auxiliary variable’ steps).
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ODEs for the (now) dynamic coefficients (δ0, δ1, δ2) in the receiver’s strategy. Our two-step

shooting method can then be applied to the new enlarged system.39

Private-value environments and one-dimensional shooting Our general analysis

requires two learning dynamics, γ and χ, because our players may signal at very different

rates. We define a private value environment as one where ûâθ = 0, i.e., the receiver’s best

reply does not directly depend on θ. There, the players signal at proportional rates (i.e.,

δ1 = ûâaα3), and the environment gains strategic symmetry:

Proposition 9. If ûâθ = 0, χt =
c1c2(1−[γt/γo]d)
c1+c2[γt/γo]d

for some positive scalars c1, c2 and d. Thus,

χt ∈ [0, c2) when γt ∈ (0, γo], where c2 is increasing in σX with lim
σX→0

c2 = 0 and lim
σX→+∞

c2 = 1.

When the players signal at similar rates (as defined above) there is a one-to-one mapping

between γ and χ. Thus, there is effectively just one ODE going forward, and traditional

one-dimensional shooting methods apply (see Bonatti et al., 2017). Two observations are

in order. First, the horizons for which we can guarantee the existence of LME in Theorem

1 are no worse than in the one-dimensional case. The reason is that, in both approaches,

the horizons found are pinned down by ensuring that the behavior ODEs admit solutions

(where the learning coefficients are used as inputs, and are bounded by Lemma 1). Thus, our

infinite-dimensional method is the “right” extension of the one-dimensional shooting case.

Second, Proposition 9 is a contribution in itself: analogous one-to-one mappings are easy

to guess when types come from symmetric distributions (e.g., Foster and Viswanathan, 1996),

but in our case the sender’s type is exogenously fixed, while the receiver’s type changes and

its distribution is determined in equilibrium. Alternatively, by extending to a second-order

belief and involving a system of ODEs, our representation is a novel result in the literature.

The upper bound c2 for χ confirms that less weight is given to the type as σX falls and the

public signal improves, as we anticipated in Section 3.2.

Other applications of the existence method Our fixed-point technique can be readily

applied in two other subareas of LQG games: games of one-sided noisy signaling involving

multidimensional types, and games with multi-sided private information and noisy public

signals, where types have different prior variances. In both cases, one or many receivers have

to construct a deterministic variance-covariance matrix when learning about multiple types

from linear strategies. Thus, multiple “learning” ODEs naturally arise.40

39In the general case, it is more convenient to skip the reduction steps 1 and 2 after (23) and state the
system solely in terms of the value function coefficients v⃗. See Appendix D for details.

40See Cetemen (2020), who uses a finite-dimensional fixed-point method from an earlier version of our pa-
per, suited for undiscounted games. Multiple learning variables also arise in Foster and Viswanathan (1994),
where types can be multi-dimensional and asymmetric; their fixed-point problem is confronted numerically.
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But our method is also applicable to other settings where equilibrium variables are en-

coded in ODEs. Consider search models for over-the-counter markets, where investors and

dealers trade assets bilaterally (e.g., Duffie et al., 2005). “Behavior ODEs” capturing will-

ingness to pay arise from Bellman equations, and these ODEs depend on the masses of

agents looking to trade through contact rates. Meanwhile, these masses obey deterministic

dynamics. With stationary solutions, the ODEs become simple algebraic equations. But the

forward-backward nature matters out of steady state, such as when an entry/exit mechanism

operates: the participation decision depends on future market profitability, so utilities enter

the ODEs for the masses of various market participants—a feedback loop emerges.41 An

infinite horizon economy can then be approximated by finite-horizon versions.42

Two-sided private monitoring If the receiver’s actions were privately monitored too,

the analysis would be more complicated. Note that the receiver would also have to rely on his

past play to forecast the sender’s “M” in his third-order belief exercise. The resulting linear

aggregate of past actions need not coincide with his contemporaneous first-order belief: past

actions carry the receiver’s past beliefs, and beliefs change over time. This means that the

sender now has to non-trivially forecast a historical average of past values of the receiver’s

first-order belief in this fourth-order belief step. Whether there are representation results

that make this problem manageable—and, equally important, whether further moving up

the belief hierarchy matters for economic outcomes—is an open question.

Linear-quadratic-Gaussian structure The tractability of static LQG models is demon-

strated by the vast number of applications in which they have been used. Less obvious is

what to expect from LQG structures in dynamic environments featuring complex information

structures like ours. This paper demonstrates that, despite the substantial gap in difficulty

when transitioning to the latter world, it is still possible to obtain new answers and insights

and to develop methodological tools that can be implemented in other domains. It is our

belief that the perhaps stylized nature of these games, rather than being a limitation, is an

asset that helps uncover forces that are robust to other, more nonlinear settings.

41Our fixed point admits a “temporal” formulation: learning depends on past behavior, which in turn
depends on future learning/behavior via backward induction. A similar circularity also arises purely from
learning in LQG decision problems with “forward-looking variables.” See Svensson and Woodford (2003).

42Bonatti et al. (2017) use this approach to show the existence of an LME in an infinite-horizon version
of their model of dynamic oligopoly with incomplete information.
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Appendix A: Proofs for Section 3

Preliminary results. We state standard results on ODEs (Teschl, 2012) which we use in

the proofs that follow. Let f(t, x) be continuous from [0, T ]× Rn to Rn, where T > 0.

- Peano’s Theorem (Theorem 2.19, p. 56): There exists T ′ ∈ (0, T ), such that there is

at least one solution to the IVP ẋ = f(t, x), x(0) = x0 over t ∈ [0, T ′).

If, moreover, f is locally Lipschitz continuous in x, uniformly in t, then:

- Picard-Lindelöf Theorem (Theorem 2.2, p. 38): For (t0, x0) ∈ [0, T ) × Rn, there is an

open interval I over which the IVP ẋ = f(t, x), x(t0) = x0 admits a unique solution.

- Comparison theorem (Theorem 1.3, p. 27): If x(·), y(·) are differentiable, x(t0) ≤ y(t0)

for some t0 ∈ [0, T ), and ẋt − f(t, x(t)) ≤ ẏt − f(t, y(t)) ∀t ∈ [t0, T ), then x(t) ≤ y(t)

∀t ∈ [t0, T ). If, moreover, x(t) < y(t) for some t ∈ [t0, T ), then x(s) < y(s) ∀s ∈ [t, T ).

Proof of Lemma 1. Let L in (10) denote a square-integrable process that isX-progressively

measurable. Inserting (10) into (8) yields at = α0t + α2tLt + α3tθ which the receiver thinks

drives Y , where α0t = β0t, α2t = β2t + β1t(1− χt), and α3t = β3t + β1tχt.

The receiver’s filtering problem is then conditionally Gaussian. Specifically, define

dŶt := dYt − [α0t + α2tLt]dt = α3tθdt+ σY dZ
Y
t ,

which are in the receiver’s information set, and where the last equalities hold from his

perspective. By Theorems 12.6 and 12.7 in Liptser and Shiryaev (1977), his posterior belief

is Gaussian with mean M̂t and variance γ1t (simply γt in the main body) that evolve as

dM̂t =
α3tγ1t
σ2
Y

[dŶt − α3tM̂tdt] and ˙γ1t = −γ
2
1tα

2
3t

σ2
Y

. (A.1)

(These expressions still hold after deviations, which go undetected.)

The sender can affect M̂t via her choice of actions. Indeed, using that dŶt = (at − α0t −
α2tLt)dt+ σY dZ

Y
t from her standpoint,

dM̂t = (κ0t + κ1tat + κ2tM̂t)dt+BY
t dZ

Y
t , where (A.2)

κ1t = α3tγ1t/σ
2
Y , κ0t = −κ1t[α0t + α2tLt], κ2t = −α3tκ1t, B

Y
t = α3tγ1t/σY . (A.3)

On the other hand, since the sender always thinks that the receiver is on path, the public

signal evolves, from her perspective, as dXt = (δ0t+δ1tM̂tdt+δ2tLt)dt+σXdZ
X
t . Because the

dynamics of M̂ and X have drifts that are affine in M̂—with intercepts and slopes that are in

the sender’s information set—and deterministic volatilities, the pair (M̂,X) is conditionally
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Gaussian. Thus, by the filtering equations in Theorem 12.7 in Liptser and Shiryaev (1977),

Mt := Et[M̂t] and γ2t := Et[(Mt − M̂t)
2] satisfy

dMt = (κ0t + κ1tat + κ2tMt)dt︸ ︷︷ ︸
=Et[(κ0t+κ1tat+κ2tM̂t)dt]

+
γ2tδ1t
σ2
X

[dXt − (δ0t + δ1tMt + δ2tLt)dt] (A.4)

γ̇2t = 2κ2tγ2t + (BY
t )

2 − (γ2tδ1t/σX)
2 , (A.5)

where dZt := [dXt − (δ0t + δ1tMt + δ2tLt)dt]/σX is a Brownian motion from the sender’s

standpoint.43 Observe that since (A.4) is linear, one can solve for Mt as an explicit function

of past actions (as)s<t and past realizations of the public history (Xs)s<t.

Inserting at = β0t + β1tMt + β2tLt + β3tθ in (A.4) and collecting terms yields dMt =

[κ̂0t + κ̂1tMt + κ̂2tLt + κ̂3tθ]dt+ B̂tdXt, where,

κ̂0t =

(
α3tγ1t
σ2
Y

)
(β0t − α0t)− δ0t

γ2tδ1t
σ2
X

, κ̂1t =

(
α3tγ1t
σ2
Y

)
(β1t − α3t)− δ1t

γ2tδ1t
σ2
X

,

κ̂2t =

(
α3tγ1t
σ2
Y

)
(β2t − α2t)− δ2t

γ2tδ1t
σ2
X

, κ̂3t =

(
α3tγ1t
σ2
Y

)
β3t, and B̂t =

γ2tδ1t
σ2
X

.

Now let R(t, s) = exp(
´ t
s
κ̂1udu). Since M0 = µ, we have

Mt = R(t, 0)µ+ θ

ˆ t

0

R(t, s)κ̂3sds+

ˆ t

0

R(t, s)[κ̂0s + κ̂2sLs]ds+

ˆ t

0

R(t, s)B̂sdXs.

Imposing (10) yields the equations

χt =

ˆ t

0

R(t, s)κ̂3sds and Lt =
R(t, 0)µ+

´ t
0
R(t, s)[κ̂0s + κ̂2sLs]ds+

´ t
0
R(t, s)B̂sdXs

1− χt
.

The validity of the construction boils down to finding a solution to the previously stated

equation for χ that takes values in [0, 1). Indeed, when this is the case, it is easy to see that

dLt =
Lt[κ̂1t + κ̂2t + κ̂3t]dt+ κ̂0tdt+ B̂tdXt

1− χt
, (A.6)

from which it is easy to conclude that L is a (linear) function of X as conjectured.

We will find a solution to the χ-equation that is C1 with values in [0, 1). Differentiating

43Theorem 12.7 in Liptser and Shiryaev (1977) is stated for actions that depend on (θ,X) exclusively,

but it also applies to those that condition on past play (i.e., on M). Indeed, from (A.2), M̂t = M̂†
t + At

where M̂†
t = M̂†

t [Z
Y
t ; s < t] and At =

´ t
0
e
´ s
0
κ2uduκ1sasds. Applying the theorem to (M̂†

t , Xt)t∈[0,T ], yields a

posterior mean M†
t and variance γ†2t for M̂

† such that M† +At =Mt as in (A.4) and γ2t = γ†2t.
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χt =
´ t
0
R(t, s)κ̂3sds then yields an ODE for χ as below that is coupled with γ1 and γ2:

γ̇1t = −γ21t(β3t + β1tχt)
2/σ2

Y (A.7)

γ̇2t = −2γ2tγ1t(β3t + β1tχt)
2/σ2

Y + γ21t(β3t + β1tχt)
2/σ2

Y − (γ2tδ1t)
2 /σ2

X (A.8)

χ̇t = γ1t(β3t + β1tχt)
2(1− χt)/σ

2
Y − (δ1tχt) (γ2tδ1t) /σ

2
X . (A.9)

In the proof of Lemma A.1 (presented next), we take the system above as a primitive and

establish that χ = γ2/γ1. Equipped with this, we set γ2 = χγ1 in the third ODE, and

after writing γ for γ1, the first and third ODEs become (13)–(14). The same Lemma A.1

establishes that 0 < γt ≤ γo and 0 ≤ χt < 1, with strict inequalities for all t > 0 if β3,0 ̸= 0.

Finally, after plugging in the expressions that define (⃗̂κ, B̂), (A.6) becomes

dLt = (ℓ0t + ℓ1tLt)dt+BtdXt, where (A.10)

l0t = − γtχtδ0tδ1t
σ2
X(1− χt)

, l1t = −γtχtδ1t(δ1t + δ2t)

σ2
X(1− χt)

, Bt =
γtχtδ1t

σ2
X(1− χt)

. (A.11)

That Lt coincides with E[θ|FX
t ] is proved in the Supplementary Appendix. □

The next lemma shows the existence and uniqueness of a solution to the ODE-system

(13)–(14) for γ and χ, a property that we exploit in our existence technique. The lemma

also establishes the remaining steps from the proof of Lemma 1:

Lemma A.1 (Learning ODEs). Suppose that (β1, β3, δ1) are continuous. Then, there is a

unique solution to (13)–(14), which satisfies 0 < γt ≤ γo and 0 ≤ χt < 1 for all t ∈ [0, T ],

with strict inequalities over (0, T ] if β3,0 ̸= 0. The same conclusions hold if δ1t = ûâθ+ûaâα3t.

Proof. Consider the system in (γ1, γ2, χ) from the proof of Lemma 1. By Peano’s Theorem,

a solution exists in some interval [0, T ′) where T ′ > 0. And since the system is locally

Lipschitz continuous in (γ1, γ2, χ) uniformly in t ∈ [0, T ], the solution is unique over any

interval of existence by the Picard-Lindelöf Theorem. By applying the comparison theorem

to γ1 and the zero function, we obtain γ1 > 0; and clearly, γ̇1 ≤ 0 so γ1 ≤ γo. Hence, γ2/γ1 is

well-defined, and it is easy to verify that it satisfies the χ-ODE. Since the solution is unique

whenever it exists, we conclude that χ = γ2/γ1, as promised in Lemma 1; in other words,

χt = Et[(M − M̂)2]/Ê[(θ− M̂)2]. We can therefore substitute γ2 = χγ1 into (A.7) and (A.9)

and abbreviate γ1 to γ to obtain (13)-(14). Next, we apply the comparison theorem to the

pairs (0, χ) and (χ, 1) to obtain 0 ≤ χ < 1.
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Using these bounds, we argue that the solution to (13)-(14) exists over [0, T ]. Suppose

by way of contradiction that the maximum interval of existence is [0, T̃ ). Then since (γ, χ)

and their derivatives are bounded, the solution can be extended to T̃ . If T̃ = T , we are done,

and if T̃ < T , by Peano’s Theorem the solution can be further extended to T̃ + ϵ for some

ϵ > 0, contradicting that [0, T̃ ) is the maximum interval of existence. We conclude that the

solution exists over the whole horizon [0, T ].

If, moreover, β3,0 ̸= 0, then γ̇1,0 < 0 and χ̇0 > 0. Hence, by continuity of γ̇1 and χ̇, there

exists ϵ > 0 such that γ1t < γo and χt > 0 for all t ∈ (0, ϵ), and by the comparison theorem,

these strict inequalities hold up to time T .

Lastly, suppose that δ1t = ûâθ + ûaâα3t = ûâθ + ûaâ(β1tχt + β3t), where (β1, β3) are

differentiable. Then the system (13)-(14) changes in that the functional form of the operator

is altered (since χ enters δ1), but importantly, it still satisfies the conditions for the Peano

and Picard-Lindelöf theorems, and the arguments above go through.

Proof of Lemma 2. Using (A.3), the dynamic (A.4) for M becomes dMt =
γtα3t

σ2
Y

(at − [α0t +

α2tLt + α3tMt])dt +
χtγtδ1t
σX

dZt, where dZt := [dXt − (δ0t + δ1tMt + δ2tLt)dt]/σX a Brownian

motion from the sender’s standpoint. As for the law of motion of L, this follows from (A.10)

using (A.11) and that dXt = (δ0t + δ2tLt + δ1tMt)dt+ σXdZt from the sender’s perspective.

Regarding variances, that Et[(Mt − M̂t)
2] = χtγt is independent of deviations by the

sender follows from the proof of Lemma 1 (which shows that γ2 := Et[(Mt − M̂t)
2] depends

only on conjectured (linear) strategies) and that of A.1 (which establishes that γ2 = χγ).

Finally, that γXt := E[(θ − Lt)
2|FX

t ] = γt
1−χt

is established in Lemma S.8 in Section S.4.1. in

the Supplementary appendix, for a more general signal structure.

We conclude with three observations about the best-response problem that follow thanks

to this lemma. First, from (A.2) and (A.4), M̂t−Mt depends only on the conjectured linear

Markov strategy by the sender, not on her actual choice of strategy. This means that Zt is

also unresponsive to deviations due to σXdZt = δ1t(M̂t−Mt)dt+σXdZ
X
t under the true data-

generating process. This ‘strategic independence’ enables us to fix an exogenous Brownian

motion Z in the laws of motion ofM and L, and solve the sender’s best-response problem with

those dynamics to find her best response. This is what happens in the traditional separation

principle for decision problems in which an unobserved state (here, M̂) is controlled—see,

for instance, Liptser and Shiryaev (1977), Chapter 16, or Bensoussan (1992), Chapters 2 and

7. An important distinction relative to this literature is that, due to the strategic nature of

our environment, estimation and optimization are not completely separated: while in both

worlds the optimal control depends on posterior estimates, our estimates non-trivially depend

on the optimal control through the players’ (correct) conjectures of equilibrium coefficients,

which enter the posterior variances. This phenomenon generates a type of feedback loop
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that arises only in equilibrium, but not after deviations (because actions are unobserved to

the counterparty). We can then split estimation and optimization in sequence as in those

decision problems, but the two steps remain non-trivially connected in equilibrium.

Second, from (17), (A.4)–(A.5) and the proof of Lemma A.1, no additional state variables

are needed, since γ2t := Et[(Mt− M̂t)
2] = χtγt is deterministic. Third, as argued in footnote

18, the set of admissible strategies for the best-response problem consists of all square-

integrable processes that are progressively measurable with respect to (θ,M,L). This set is

the traditional one in stochastic control (Chapters 1.3 and 3.2 in Pham, 2009): it obviously

does not restrict to a linear use of the states, and the dynamics of M and L admit (strong)

solutions in this space, so the strategy profile consisting of an admissible strategy for the

sender and a linear Markov one for the receiver are also admissible in the sense of Section 2.

Note that this set it is richer than that in Definition 1, due to the conditioning on M .

Proof of Proposition 1. The proof uses the BVP from Section 5 to find LMEs in the general

case. The idea is as follows. Suppose that uaâ = ûaâ = ψââ = 0. First, the players’ myopic

behavior at time T implies the terminal values β1T = β2T = δ2T = v6T = v8T = 0 in any LME

(where v6 and v8 are the coefficients on L2 andML in the sender’s candidate quadratic value

function from Section 5); this can be seen from the myopic equilibrium (24), where only β0T

changes if ψâ(0) ̸= 0 (see Section S.3.2 in the Supplementary Appendix). Now, consider

the ODEs in Appendix C that form our BVP: by simple inspection, the constant (0, 0, 0, 0)

satisfies the ODEs and terminal values for (β1, β2, v6, v8). By the Picard-Lindelöf theorem,

these are the unique solutions, so a = β0t + β3tθ and â = δ0t + δ1tM̂ in any LME. Using the

same ODEs, it is easy to see that (β3, γ) are independent of (σX , (χt)t∈[0,T ]). Regarding β0,

the same is true due to v3 ≡ 0, the coefficient on L in the value function, reflecting that the

public signal has no use in this case; see Section S.3.4 in the Supplementary Appendix.

Next, suppose Y is public and that players are conjectured to follow the strategies above.

The effect of making Y public is that M ≡ L ≡ M̂ , with M̂ being the same function of the

history of Y as in the non-public case. Since δ2 ≡ 0, the sender’s best response problem

is unchanged, and since β1 ≡ β2 ≡ 0, the receiver’s problem is also unchanged. Thus, the

strategy profile continues to be an equilibrium (again, irrespective of (χt)t∈[0,T ] and σX).

Appendix B: Proofs for Section 4

In this section, we prove Proposition 2 and cover the main elements of the proofs of Propo-

sitions 3 and 4. The remaining details and the proofs for Sections 4.2 and 4.3 can be found

in Sections S.1, S.2, and S.4, respectively, in the Supplementary Appendix.
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B.1: Proof of Proposition 2

This proof relies on the proof of Theorem 1 in Section C. Consider the time-reversed ODEs

for the strategy coefficients, with (γ, χ) as an input, and initial conditions given by static

equilibrium that arises at t = T . One can check that v6 = σ2
Y [−1+2β1(1−χ)+α3]/(4α3γ)−

v8/2 and β2 = 1−β1−β3 satisfy the ODEs and initial conditions for (v6, β2); by the Picard-

Lindelöf Theorem, these are the unique solutions, and hence β1 + β2 + β3 ≡ 1. As for α3,

note that its terminal value is β1TχT + β3T = 1
2−χT

> 0, and its (backward) ODE is

α̇3t = −rα3t[α3t(2− χt)− 1] +
2α3

3tγtχt
σ2
Xσ

2
Y (1− χt)

{
σ2
Y χt[1− α3t − β1t(1− χt)] + α3tγtv8t

}
.

Applying the comparison theorem to α3 (going backward in time) establishes α3 > 0. Now

on the equilibrium path, at = β0t+α3tθ+α2tLt = β0t+α3tθ+(1−α3t)Lt, where α2 ≡ 1−α3

follows from β1+β2+β3 = 1. The receiver thus plays ât = Êt[at] = β0t+α3tM̂t+(1−α3t)Lt.

To prove the remaining inequalities, we again use the proof of Theorem 1 and (within it)

the proof of Theorem C.1. The broad idea is that we can always find non-trivial horizons

(depending on parameters), such that the solutions to our ODEs cannot have grown enough

to violate the inequalities of interest. Concretely, define ρ > 0 as in Step 2 of the latter proof.

For all K ∈ (0, 1), there exists T (γo;K) ∈ Ω(1/γo) such that for all T < T (γo;K), there

exists a solution to the BVP in (γ, χ, β1, β̃2, β3, ṽ6, ṽ8) (where β̃2, ṽ6, and ṽ8 are defined as

in the proof of Theorem 1) with the following properties: χ ∈ [0, 1); the myopic coefficients

(βm1t , β̃
m
2t , β

m
3t) =

(
1

2(2−χt)
, 1
2(2−χt)

, 1
2

)
are bounded in magnitude by ρ; (β1, β̃2, β3) differ from

their myopic counterparts by at most K and similarly |ṽ6|, |ṽ8| ≤ K; and (γ, χ) are Lipschitz

continuous with uniform Lipschitz constants that depend on ρ and K but not T , and that

are in O(γo). Hence, given any constant K, there exists T †(γo;K) ∈ Ω(1/γo) such that in

addition to the earlier bounds, we also have |γt − γo| ≤ K and |χt| ≤ K. Define g(K) =
K

4(2−K)
, which is an upper bound on ||(βm1t , β̃m2t , βm3t)− (1/4, 1/4, 1/2)||∞, where || · ||∞ denotes

the sup norm, when χt takes values in [0, K]; observe that g(K) → 0 as K → 0. Now for

arbitrary K > 0, for all T < T †(γo;K), by the triangle inequality we have ||(β1t, β̃2t, β3t) −
(1/4, 1/4, 1/2)||∞ ≤ K + g(K). Taking K sufficiently small ensures that β3t ∈ (0, 1), α3t ∈
(0, 1), and β1t, β̃2t ∈ (0, 1/2), and thus β2 = (1− χt)β̃2t ∈ (0, 1/2).

Next, we prove β3t ≥ 1/2 and α3t > 1/2 for t < T for appropriately chosen T . We show

that β̇3 < 0. Write the (forward) ODE for β3 as β̇3t = fβ3(γ, χ, β1, β̃2, β3, ṽ6, ṽ8), where f
β3 is

of class C1. It is easy to check that fβ3(z) = − γo

16σ2
Y
< 0, where z := (γo, 0, 1/4, 1/4, 1/2, 0, 0)

is the vector of coefficients in the equilibrium of the trivial (T = 0) game. For any K > 0

and T < T †(γo;K), by construction, ||(γ, χ, β1, β̃2, β3, ṽ6, ṽ8) − z||∞ ≤ K + g(K). Thus by
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continuity of fβ3 , for sufficiently small K, if T < T †(γo;K), β̇3t < 0 for all t ∈ [0, T ]. Given

β3T = 1/2, this implies β3t ≥ 1/2 for all t and β3t > 1/2 for t < T . In turn, for all t > 0 we

have β1tχt > 0 and thus α3t > β3t ≥ 1/2. Since α3,0 = β3,0 > 1/2, α3t > 1/2 for all t.

To show β0t < k for t < T (T depending on parameters), it suffices to show β̇0t > 0

(because β0T = k). Let αm3t =
1

2−χt
and ṽ3 =

γv3
1−χ . The (forward) ODEs for (β0, ṽ3) are

β̇0t = r
α3t

αm3t
(β0t − k) +

α2
3tγt

σ2
Y σ

2
X

[
kσ2

X − 2ṽ3tα3tχt − 2(β0t − k)χt(ṽ8tα3t + σ2
Y β̃2tχt)

]
ṽ3t =

β0tγt(1− α3t)

2(1− χt)
+ ṽ3t

(
r +

α2
3tγtχt
σ2
X

)
.

(See spm.nb on our websites.) Write the β0-ODE by β̇0 = fβ0(β0, ṽ3, γ, χ, β1, β̃2, β3, ṽ6, ṽ8),

where fβ0 is of class C1. It is easy to check that fβ0(k, 0, z) = kγo

4σ2
Y
> 0 for z as above. Extend-

ing the bounding arguments above to encompass (β0, ṽ3), for any K there exists T †(γo;K) ∈
Ω(1/γo) such that for T < T †(γo;K), ||(β0, ṽ3, γ, χ, β1, β̃2, β3, ṽ6, ṽ8)−(k, 0, z)||∞ ≤ K+g(K);

thus, by continuity of fβ0 , for K sufficiently small, β̇0t > 0 for all t.

B.2: Proofs of Propositions 3 and 4

The full details are in Section S.1 in the Supplementary appendix. We describe them briefly.

(I) The proof of Proposition 3(i)—finding horizons such that β0 when σX > 0 is always

larger than its counterpart when Y is public (or σX = 0), βpub0 —is similar to the proof

that establishes the bounds for the strategy coefficients in Proposition 2. The idea is that

β0T = βpub0T = k while β̇0T < β̇pub0T . Thus, β0t > βpub0t in a neighborhood (T − ϵ, T ]. Hence, for

T depending on parameters, one can ensure that the solutions do not violate this ranking.

(II) The remaining statements pertain to σX ∈ {0,+∞}. LMEs can be found as follows.

Case σX = 0. We characterize an LME where at = β0t + β1tM̂t + β3tθ and ât = Êt[at] =
β0t+(β1t+β3t)M̂t. Further, we prove that in any such an equilibrium must satisfy β1+β3 ≡ 1,

so the sender effectively recovers M̂ . The laws of motion for the receiver’s belief are

dM̂t =
β3tγt
σ2
Y

{dYt − [(β0t + (β1t + β3t)M̂t)︸ ︷︷ ︸
=Êt[at]

dt]} and γ̇t = −
(
β3tγt
σY

)2

, (B.1)

with M̂0 = µ and γ0 = γo. Clearly, (θ, M̂t, t) are the relevant states for the sender’s problem,

as M̂t is public. Let V denote the sender’s value function. The HJB equation is

rV = sup
a∈R

{
1

4
[−(a− θ)2 − (a− ât − k)2] +

β3tγt
σ2
Y

[a− β0t − (β1t + β3t)m]Vm +
β2
3tγ

2
t

2σ2
Y

Vmm + Vt

}
.
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We guess V (θ,m, t) = v0t + v1tθ + v2tm+ v3tθ
2 + v4tm

2 + v5tθm to derive a system of ODEs

for (β0, β1, β3) subject to terminal conditions (β0T , β1T , β3T ) = (k, 1/2, 1/2); these ODEs

depend on γ, which evolves according to (B.1) with initial condition γ0 = γo. This defines a

BVP in (β1, β3, γ). Equipped with a solution, it is easy to recover β0 and the value function

coefficients; showing that β1 + β3 ≡ 1 is done using the same approach as in Proposition 2.

Regarding existence, with only one ODE going forward we can use a shooting method.

Specifically, we construct an IVP consisting of ODEs for (β1, β3, γ) in reversed time, and

with an auxiliary variable γF for the (reversed) γ ODE. Via an intermediate-value theorem

argument as in Bonatti et al. (2017), there must be a γF > 0 such that γT = γo while all the

other ODEs in the IVP admit solutions; see the Supplementary Appendix for the details.

Case σX = +∞ Since L ≡ µ in this case, we look for an equilibrium in which the sender

plays at = β0t + β1tMt + β2tµ+ β3tθ. The following representation result holds:

Lemma B.1 (Belief Representation). Assume σX = +∞. Suppose the receiver expects

at = α0t + α2tµ + α3tθ, where α0 = β0, α2 = β2 + β1(1 − χ), α3 = β3 + β1χ, χ = 1 − γ/γo,

and γt := Êt[(θ − M̂t)
2]. Then γ̇t = −

(
γtα3t

σ2
Y

)2
. Moreover, if the sender follows at =

α0t + α2tµ+ α3tθ, then Mt = χtθ + (1− χt)µ holds at all times.

That the states (θ,Mt, t) are sufficient on and off path for the sender is as in the paper—

refer to the Supplementary Appendix for the details and the proof of the previous lemma.

The sender then controls M , which evolves as dMt =
α3tγt
σ2
Y

(a− α0t − α2tµ− α3tMt) dt,

where M0 = µ, γ̇t = −
(
α3tγt
σY

)2
, α3 = β3 + β1χ, and χ = 1− γ/γo. The HJB equation is

rV (θ,m, µ, t) = sup
a∈R

{
1

4
[−(a− θ)2 − (a− k − α0t − α2tµ− α3tm)2 − α2

3tγtχt]

+Vt +
α3tγt
σ2
Y

(a− α0t − α2tµ− α3tm)Vm

}
.

We guess V (θ,m, µ, t) = v0t+v1tθ+v2tm+v3tµ+v4tθ
2+v5tm

2+v6tµ
2+v7tθm+v8tθµ+v9tmµ

and take analogous steps to those in the σX = 0 case, leading to a BVP for (β0, β1, β2, β3, γ)

(because of the one-to-one mapping between γ and χ). With only one ODE going forward,

the argument for existence is analogous σX = 0 case. Finally, we can show that β1+β2+β3 ≡
1 and at = β0t + (1− α3t)µ+ α3tθ, with α3 ∈ (1/2, 1).

(III) The comparisons of signaling coefficients and inflationary biases when σX ∈ {0,+∞}
exploit the use of analytic solutions when r = 0. See Sections S.1.4 and S.1.5.
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Appendix C: Proofs for Section 5

Overview of approach Our overall proof strategy consists of reducing the HJB equation

(22) subject to the equilibrium condition (23) to a suitable boundary value problem that we

then solve using a fixed-point argument. The BVP will contain ODEs linked to behavior—

hence, involving terminal conditions—and also the learning ODEs for (γ, χ) that have initial

conditions. The fixed point will be over pairs of functions (γ, χ): a pair (γ∗, χ∗) that generates

mutual best responses that in turn induce learning ODEs whose solution is (γ∗, χ∗). For

brevity, we often use α for the sender’s signaling coefficient (i.e., we omit subscript 3).

This overarching goal requires several intermediate steps, which we label core subsystem,

centering, auxiliary variable, fixed point and verification; we provide brief explanations of

these when they arise. Throughout the proof, we refer to the myopic equilibrium coefficients

(βm0t , β
m
1t , β

m
2t , β

m
3t) =

(
ua0 + uaâûâ0
1− uaâûaâ

,
uaâ(uaθûaâ + ûâθ)

1− uaâûaâχt
,
u2aâûaâ(uaθûaâ + ûâθ)(1− χt)

(1− uaâûaâ)(1− uaâûaâχt)
, uaθ

)
,

which correspond to the sender’s strategy coefficients in the unique linear Bayes Nash equilib-

rium involving states (θ,M, M̂, L) of the static game with flow utilities (u, û) if the receiver

believes Mt = χtθt + (1 − χt)Lt. By Assumption 2, (βm0t , β
m
1t , β

m
2t , β

m
3t) is well-defined and

αmt := βm1tχt + βm3t ̸= 0 for all χt ∈ [0, 1]. Henceforth, given χt, we write βmit and αmt to refer

to these functions of χt, suppressing the dependence on χt.

Core subsystem: We show that the problem of existence of LME reduces to a core subsystem

in (γ, χ, β⃗, v6, v8), where β⃗ := (β1, β2, β3), and perform a change of variables for (β2, v6, v8);

we denote the new system by (γ, χ, β1, β̃2, β3, ṽ6, ṽ8).

The first thing to note is that αt := β1tχt+ β3t ̸= 0 for all t ∈ [0, T ] in any LME. Indeed,

if αt = 0, it is then easy to verify from the HJB equation that βit = βmit for i ∈ {0, 1, 2, 3}:
since the sender’s actions transmit no information, both players must be using myopic best

responses. But this implies that αt = αmt ̸= 0 in such an LME, a contradiction. Second,

since the coefficients (β0, β1, β2, β3) and χ will be continuous, it follows that γt > 0 at all

times by Lemma A.1. From the HJB equation, it is easy to see that

v2t = −σ2
Y [ua0 + uaâûâ0 − (1− uaâûaâ)β0t]/(αtγt) (C.1)

v5t = −σ2
Y [uaâûâθ + uaâûaâαt − β1t]/(2αtγt) (C.2)

v7t = −σ2
Y [uaθ − β3t]/(αtγt) (C.3)

v9t = −σ2
Y [uaâûaâβ1t(1− χt)− β2t(1− uaâûaâ)]/(αtγt). (C.4)

Expressions (C.1)-(C.4) allow us to eliminate vi and v̇i, i ∈ {2, 5, 7, 9}, in the HJB equation
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to get a system of ODEs for (γ, χ, β0, β⃗, v0, v1, v3, v4, v6, v8)—as a last step we verify that our

(α, γ) satisfy |αt||γt| > 0 all t ∈ [0, T ], recovering the value function through (C.1)-(C.4).

The full system of ODEs can be found in the Mathematica file spm.nb on our websites—

we omit them in favor of stating the core subsystem with which we will be working below.

The omitted system has three properties easily verified by inspection in the same file:

(i) the ODEs for (β⃗, v6, v8) do not contain (v0, v1, v3, v4, β0);

(ii) given (β⃗, v6, v8), (v0, v1, v3, v4, β0) form a non-homogeneous linear ODE system; and

(iii) (β⃗, v6, v8) carries (1− χ) in the denominator.

Parts (i) and (ii) imply that we can focus on the sub-system (β⃗, v6, v8), as any linear

system with continuous coefficients admits a unique solution for all times (Teschl, 2012,

Corollary 2.6).44 Part (iii) reflects that the dynamic for L carries a denominator of that

form; by Lemma A.1, however, we know that χ ∈ [0, 1) if the coefficients are continuous.

It is then convenient to use the change of variables (β̃2, ṽ6, ṽ8) = (β2/(1 − χ), v6γ/(1 −
χ)2, v8γ/(1− χ)) that eliminates this denominator in the resulting system for the functions

(γ, χ, β1, β̃2, β3, ṽ6, ṽ8)—because (χ, γ) only depend on (β1, β3) directly, it follows that χ ∈
[0, 1) and γ > 0 in any solution to this system, and we trivially recover (β2, v6, v8).

45

We can now state the core subsystem of ODEs for (γ, χ, β1, β̃2, β3, ṽ6, ṽ8) with which we

will be working. Recall that δ1t = ûâθ + ûaâ(β1tχt + β3t).

˙̃v6t = ṽ6t[r + α2
tγt/σ

2
Y + 2δ21tγtχt/σ

2
X ]− (γt/2)

{
β2
1tûaâ[2uaâ + uââûaâ]

+β̃2t(2β1t + β̃2t)[−1 + 2uaâûaâ + uââû
2
aâ]
}

˙̃v8t = ṽ8t[r + δ21tγtχt/σ
2
X ]− γt

{
(β̃2 + β1t)[uaθ + uâθûaâ]− β1tβ3t

}
β̇1t = r

αt
αmt

[β1t − βm1t ]− γt[σ
2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
β̃2t2(1− uaâûaâ)σ

2
Y δ

2
1tχt(uaθ + β1tχt) + β2

1t[σ
2
Xαt(uaθ + uaâûâθχt) + (1− 2uaâûaâ)σ

2
Y δ

2
1tχ

2
t ]

+β1tσ
2
Xαt[ûaâ(uaâ + uââûaâ)α

2
tχt + ûâθ(uâθ + uââûâθχt) + αt(−uaθ + uâθûaâ + 2uââûaâûâθχt)]

−β1tσ2
Y uaâδ

2
1tχt(2uaθûaâ + ûâθχt) + δ21tṽ8tαtχt(β1t − uaâûâθ)

−σ2
Xδ1tαt[uaâ(uâθûâθ − uaθαt)− uââuaθδ1t]

}
.

44Intuitively, (v0, v1, v4) are the coefficients of the constant, θ- and θ2-terms in the sender’s value function,
none of which the sender controls, so they do not affect the rest of the system. The equations for (β0, v3)
are coupled and encode the deterministic component of the sender’s incentive to manipulate beliefs; they do
not enter the sub-system for (β⃗, v6, v8) but depend on the latter through the signal-to-noise ratio in Y .

45Our method for finding intervals of existence of LME relies on bounding solutions to ODEs uniformly,
and this denominator would unnecessarily complicate that task since there is no upper bound on 1/(1− χ)
that applies to all environments. This change of variables is akin to working with L̃ = (1−χ)L instead of L.
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˙̃β2t = r
αt
αmt

[β̃2t − β̃m2t ]− γt[σ
2
Xσ

2
Y (uaθ + uaâûâθχt)(1− uaâûaâ)]

−1×{
δ21tαtχt[2ṽ6t(uaθ + uaâûâθχt)− u2aâûaâûâθṽ8t]

+β̃2tσ
2
Xαt[ûaâ(1− uaâûaâ)(uaâ + uââûaâ)α

2
tχt + ûâθ(uâθ + uaâuaθ − uaâuâθûaâ + uââuaθûaâ

+[u2aâ + uââ]ûâθχt) + αt(uâθûaâ[1− uaâûaâ] + uaθ[−1 + 2uaâûaâ + uââû
2
aâ]

+ûaâûâθχt[u
2
aâ + 2uââ − uaâuââûaâ])] + δ1t[σ

2
Xuaâûaâαt(uaθuââδ1t + uaâ[uaθαt − uâθûâθ])]

−β̃2tσ2
Y (1− uaâûaâ)δ

2
1tχt[uaθ(1− 2uaâûaâ) + χt(uaâûâθ − β1t[1− 2uaâûaâ])]

+αt(1− uaâûaâ)[β̃2tṽ8tδ
2
1tχt − σ2

Xβ
2
1t(uaθ + uaâûâθχt)] + 2σ2

Y δ
2
1tβ̃

2
2tχ

2
t (1− uaâûaâ)

2

+β1tδ1t[σ
2
Xαt(uaâ + uââûaâ)(uaθ + uaâûâθχt) + σ2

Y δ1tχtuaâuaθûaâ(1− 2uaâûaâ)]
}

β̇3t = r
αt
αmt

[β3t − βm3t ]− γt[σ
2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
β̃2t2(1− uaâûaâ)σ

2
Y δ

2
1tχ

2
t (β3t − uaθ)− β2

1tχt[σ
2
Xαt(uaθ + uaâûâθχt) + σ2

Y δ
2
1tχ

2
t (1− 2uaâûaâ)]

−β1tαtσ2
X [ûaâ(uaâ + uââûaâ)α

2
tχ

2
t + ûâθχt(uâθ + uââûâθχt)

+αt([uâθûaâ − uaâûâθ]χt − uaθ + [uaâ + 2uââûaâ]ûâθχ
2
t )]− β1tδ

2
1tχ

2
tσ

2
Y (1− 2uaâûaâ)(uaθ − αt)

+δ21tαtχtṽ8t(β3t + χtuaâûâθ) + σ2
Xδ1tαt[(uaâuâθ − uââuaθ)ûâθχt + (uaâ + uââûaâ)α

2
tχt

+αt(uâθ − χt[uaθ(uaâ + uââûaâ)− uââûâθ])]
}

γ̇t = −(β1tχt + β3t)
2γ2t /σ

2
Y , χ̇t = γt

[
(β1tχt + β3t)

2(1− χt)/σ
2
Y − δ21tχ

2
t/σ

2
X

]
.

This system has two initial conditions (γ0, χ0) = (γo, 0). It also has terminal conditions

for (β1T , β̃2T , β3T , ṽ6T , ṽ8T ) that depend on whether there are terminal payoffs. In what

follows, we focus on the case without terminal payoffs—i.e., where the terminal conditions are

(βm1T , β̃
m
2T , β

m
3T , 0, 0)—postponing the discussion of terminal payoffs to the end of the analysis.

We note that the remaining denominators never vanish thanks to Assumption 2, and that all

the ODEs carry r-independent terms that scale linearly in γ; this latter property will allow

us to find horizons for existence that are inversely proportional to γo.

Centering: To exploit discounting, we focus on the centered system (γ, χ, βc1, β̃
c
2, β

c
3, ṽ6, ṽ8),

where (βc1, β̃
c
2, β

c
3) denotes (β1, β̃2, β3) net of the myopic counterpart. The tuple (β1, β̃2, β3)

is constructed going backward in time from its terminal value as with backward induction

in discrete time. One would expect higher discount rates to pull these coefficients towards

the myopic values more strongly, thereby facilitating the existence of LME. Indeed, the

term −r α
αm (βi − βmi ) in the time-reversed version of the βi-ODE reflects this fact as long as

α := β1χ+β3 does not change sign. To exploit the effect of discounting when finding intervals

of existence, it is then useful to introduce the centered coefficients, i.e., xcit := xit − xmit for
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x ∈ {β1, β̃2, β3}, and work with the ODEs of (βc1, β̃
c
2, β

c
3, ṽ6, ṽ8) in backward form.46

The next lemma states the key properties of this backward centered system, noting that

(i) the RHS of the ODEs for (β1, β̃2, β3) above are polynomials in (β1, β̃2, β3) = (βc1+β
m
1 , β̃

c
2+

β̃m2 , β
c
3+β

m
3 ), (ii) (βm1 , β̃

m
2 , β

m
3 ) are functions of χ and are independent of r, (iii) (β̇m1 ,

˙̃βm2 , β̇
m
3 )

carry a factor of γ through χ̇, and (iv) αmt = uaθ+uaâûâθχt

1−uaâûaâχt
. (The proof is straightforward and

hence omitted.) Without fear of confusion, in the lemma and in what follows we denote

the solution to the backward system by (βc1, β̃
c
2, β

c
3, ṽ6, ṽ8) (and unless otherwise stated, we

always refer to the backward system when invoking this tuple). Also, let β⃗c := (βc1, β̃
c
2, β

c
3).

Lemma C.1. For x ∈ {β1, β̃2, β3} and y ∈ {ṽ6, ṽ8}, the (backward) ODEs that xc and y

satisfy have the form

ẋct = −rxct
αt
αmt

+
γthx(β⃗

c, ṽ6t, ṽ8t, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,x(1− uaâûaâχt)n2,x(1− uaâûaâ)n3,x

ẏt = −yt[r + γtRy(β⃗
c, ṽ6t, ṽ8t, χt)] +

γthy(β⃗
c, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,y(1− uaâûaâχt)n2,y(1− uaâûaâ)n3,y

,

where ni,x, ni,y ∈ N, i = 1, 2, 3, and hx, hy, and Ry ≥ 0 are polynomials.47 The initial

conditions are (β⃗c0, ṽ60, ṽ80) = (0, 0, 0, 0, 0).

In particular, notice that (i) the terms not containing r continue scaling with γ, (ii)

the denominators are bounded away from zero, and (iii) the discount rate term pushes any

solution towards zero when α does not change sign. We turn to this issue in the next step.

Auxiliary variable: To exploit discounting, we introduce an auxiliary variable α̃ ̸= 0 and

work with an ODE-system for (γ, χ, βc1, β̃
c
2, β

c
3, ṽ6, ṽ8, α̃). Observe that α will indeed never

vanish in any solution to the centered system. In fact, a tedious but straightforward exercise

shows that in backward form, α = β1χ+ β3 satisfies

α̇t = αt

{
−r
(
αt
αmt

− 1

)
+ γt[σ

2
Xσ

2
Y (uaθ + uaâûâθχt)]

−1×{
δ1t[β1tχt + β3t]σ

2
Xuâθ + δ1tχt[δ1tχtσ

2
Y (2β̃2t[1− uaâûaâ] + β1t[1− 2uaâûaâ])

+(β1tχt + β3t)(δ1tṽ8t + σ2
X [uââδ1t + uaâ(β1tχt + β3t)])]

}}
, (C.5)

with initial condition α0 = αm0 = uaθ+uaâûâθχ0

1−uaâûaâχ0
(here, for consistency, χ0 is the terminal value

of χ going forward in time). By Assumption 2, αm0 always has the same sign as uaθ because

χ0 ∈ [0, 1]. Also, the right-hand side of (C.5) is proportional to α, so it vanishes at α ≡ 0.

46Note that a backward first-order ODE of a function f is obtained by differentiating f̃ = f(T − t), and
hence only differs with the original one in the sign. We maintain the labels to avoid notational burden.

47More precisely, we have n1,x = 1, n1,y = 0, and n3,β1
= n3,β3

= 0.
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By the comparison theorem, α is always nonzero, as the ODE is locally Lipschitz continuous

in α uniformly in time. Moreover, since αm never changes sign, α/αm > 0.

However, our fixed point argument will input general (γ, χ) pairs into the backward ODEs

of Lemma C.1, pairs that need not solve the learning ODEs (or even be differentiable). Thus,

we will not be able to use a comparison argument like that above to show that each induced

α := β1χ+ β3 never changes sign for any (γ, χ), allowing us to exploit the discount rate.

To circumvent this difficulty, we augment the BVP with an auxiliary variable α̃ to serve

as a proxy for α in the r term in the centered system; by construction, it will share the sign

of αm and, in any solution to the BVP, will coincide with α. Specifically, observe that using

the decomposition x = xc+xm for x ∈ {β1, β̃2, β3} yields that the r-independent term inside

the outer brace of (C.5) is of the form γthα(β⃗c,ṽ6,ṽ8,χt)

σ2
Xσ

2
Y (uaθ+uaâûâθχt)

n1,α (1−uaâûaâχt)
n2,α (1−uaâûaâ)n3,α , where

hα is a polynomial and nj,α ∈ N, j = 1, 2, 3. We introduce the (backward) linear ODE

˙̃αt = α̃t

{
−r
(
αt
αmt

− 1

)
+

σ−2
X σ−2

Y γthα(β⃗
c, ṽ6, ṽ8, χt)

(uaθ + uaâûâθχt)n1,α(1− uaâûaâχt)n2,α(1− uaâûaâ)n3,α

}
(C.6)

with initial condition α̃0 = αm0 . That is, the right-hand side of (C.6) is exactly as the

one in (C.5) except for α̃ now multiplying the bracket. The exact same application of the

comparison argument between α and 0 shows that α̃ never vanishes over its interval of

existence for any pair (γ, χ) Lipschitz taking values in [0, γo]× [0, 1], and α̃/αm > 0.

Our augmented BVP then consists of the ODEs of xc = βc1, β̃
c
2, β

c
3 in Lemma C.1 with

a modified r-term of the form −rxct α̃t

αm
t
, i.e., with α̃ replacing α in the numerator of the

fraction accompanying r. It also includes: the ODEs of y = ṽ6, ṽ8; the learning ODEs (13)-

(14); and the ODE (C.6) of α̃.48 The resulting system of ODEs—denote it żt = F (zt),

where z := (γ, χ, β⃗c, ṽ6, ṽ8, α̃)—is such that each component of F (z) is a polynomial divided

by a product of powers of 1− uaâûaâ, 1− uaâûaâχt, and uaθ + uaâûâθχt. Since the latter are

bounded away from zero, F is of class C1. We verify at the end of the proof that any solution

to this augmented BVP satisfies that α := β1χ+ β3 coincides with α̃ by construction.49

Fixed point: Use a fixed-point argument to show that there are horizon lengths of order

1/γo such that the augmented BVP admits a solution. We will prove the following result:

Theorem C.1. Under Assumptions 1 and 2, there is a strictly positive function T (γo) ∈
Ω(1/γo) such that if T < T (γo), there exists a solution to the BVP in z = (γ, χ, β⃗c, ṽ6, ṽ8, α̃).

Proof. The proof consists of converting the BVP into a fixed point problem over pairs λ :=

(γ, χ) in a suitable set. Specifically, for a given λ we can first solve the backward initial value

48For consistency, the αt in the r-term in (C.6) and in (13)-(14) must be written as (βc
1t+β

m
1t)χt+β

c
3t+β

m
3t .

49In a slight abuse of notation, żt = F (zt) assumes that the ODEs have been stated in only one direction.
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problem (IVP) in the variables (β⃗c, ṽ6, ṽ8, α̃) that takes λ as an input. Second, we can solve

the forward IVP for the two learning coefficients that takes as an input the solution from

the previous step. This procedure generates a continuous mapping from candidate λ paths

in a suitable set to itself, to which we apply Schauder’s fixed point theorem.

Step 1: Define the domain for our fixed point equation. Let C denote the Banach space

of continuous functions from [0, T ] to R, equipped with the sup norm || · ||∞ defined by

||x||∞ := sup{|xt| : t ∈ [0, T ]}. (To economize on notation, we use || · ||∞ to denote the

supremum norm for objects of all other dimensions too.) By the Arzela-Ascoli theorem (Ok,

2007, p. 198), the space of uniformly bounded functions with a common Lipschitz constant

is a compact subspace of C. In particular, for all ρ,K > 0, define Γ(ρ + K) ⊂ C as the

space of uniformly Lipschitz continuous functions γ : [0, T ] → [0, γo] with uniform Lipschitz

constant (γo)2(2[ρ +K])2/σ2
Y that satisfy γ0 = γo. Likewise, let X(ρ +K) ⊂ C denote the

space of Lipschitz continuous functions χ : [0, T ] → [0, 1] with uniform Lipschitz constant

γo [(2[ρ+K])2/σ2
Y + (|ûâθ|+ |ûaâ|2[ρ+K])2/σ2

X ] that satisfy χ0 = 0. Thus, the product

Λ(ρ+K) := Γ(ρ+K)×X(ρ+K) is a compact subspace of C2.

We note that the these Lipschitz constant are motivated by a bounding exercise of the γ

and χ ODEs that uses |βci | < K and |βmi | < ρ, implying that |βi| < ρ +K, i = 1, 3. Below,

we shall construct horizons over which any solution satisfies this property.

Step 2: Given (γ, χ) ∈ Λ(ρ + K), define a backward initial value problem (IVP) for

(β⃗c, ṽ6, ṽ8, α̃), and establish sufficient conditions for this IVP to have a unique solution.

For any function x, let us use x̂(·) := xT−(·) to emphasize the time-reversed version of x

whenever convenient (not to be confused with the hat notation used in the main body).

Given any λ ∈ Λ(ρ+K), where (ρ,K) ∈ R2
++, we can define a (backward) IVP consisting of

the ODEs for (β⃗c, ṽ6, ṽ8, α̃) previously stated, but where λ̂ is used in place of the solutions

of the learning ODEs. We write this problem as

ḃt = f λ̂(bt, t) s.t. b0 = (0, 0, 0, 0, 0, αm(λ̂0)), (IVPbwd(λ̂))

where the use of boldface distinguishes solutions to this IVP from those of our original BVP.

We write b(·;λ) for the solution as a functional of the input λ. The extra dependence on

time in the right hand side of (IVPbwd(λ̂)) is due to the role of λ in the system.

For all λt ∈ [0, γo]× [0, 1], let B(λt) := (βm1 (λt), β̃
m
2 (λt), β

m
3 (λt), 0, 0, α

m(λt)). From here,

we define ρ := supλt∈[0,γo]×[0,1] ||B−6(λt)||∞ > 0, with B−i denoting as usual the vector B

excluding Bi.
50 For arbitrary K > 0, we now establish sufficient conditions for (IVPbwd(λ̂))

50We exclude α̃ from the definition of ρ because it does not enter the ODEs for the learning coefficients
explicitly, and hence it does not affect the definition of Λ(ρ+K).
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to have a unique solution for each λ ∈ Λ(ρ+K).

Lemma C.2. Fix γo, K > 0. There exists a threshold T (γo;K) > 0 such that if T <

T (γo;K), then for all λ ∈ Λ(ρ + K), a unique solution b(·;λ) to (IVPbwd(λ̂)) exists over

[0, T ] and satisfies ||bi(·;λ)||∞ < K for all i ∈ {1, . . . , 5}. Moreover, T (γo;K) ∈ Ω(1/γo).

Proof. Fix any λ ∈ Λ(ρ +K). Since λ is continuous in t and f λ̂ is of class C1 with respect

to bt, f
λ̂ is locally Lipschitz continuous in bt, uniformly in t. By Peano’s theorem, a local

solution exists; and by the Picard-Lindelöf theorem, solutions are unique given existence.

Given K > 0, we now construct T (γo;K) such that a solution exists over [0, T ] and satisfies

||bi(·;λ)||∞ < K for i ∈ {1, . . . , 5}.
We state two facts that hold over any interval of existence. First, using the ODEs adapted

from Lemma C.1 (using α̃ instead of α in the r terms), we have for i ∈ {1, 2, 3} and j ∈ {4, 5}

bit =

ˆ t

0

e
−r
´ t
s

α̃u
αm
u
du
γ̂shi(bs, χ̂s)ds and bjt =

ˆ t

0

e−
´ t
s (r+γ̂uRj(bu,χ̂u))duγ̂shj(bs, χ̂s)ds.

Here, hi and hj include the denominators that were factored out of hx and hy in Lemma C.1,

and do not contain α̃; Rj is only a relabeling of Ry from the same lemma. Second, as long as

the conjectured bounds |bit| < K for i ∈ {1, 2, . . . , 5} hold, a direct bounding exercise on hi

that uses χt ∈ [0, 1] yields the existence of a scalar hi(K) such that |γ̂shi(bs, χ̂s)| ≤ γohi(K),

i ∈ {1, 2, . . . , 5}, where we have used that γt ∈ [0, γo] at all times.

Equipped with the equations above for bi and with hi(K), i ∈ {1, . . . , 5}, notice that the
bound |bit| < K clearly holds for small t. And as long as it holds, α̃ is finite because b6t has

the form αm0 e
´ t
0 Gsds with |Gs| < +∞ as the latter depends only on (b−6, χ̂) at time s ∈ [0, t].

Moreover, α̃/αmt > 0 (see ‘Auxiliary variable’). Thus, for i ∈ {1, 2, 3} and j ∈ {4, 5},

|bit| ≤
ˆ t

0

e
−r
´ t
s

α̃u
αm
u
du
γohi(K)ds ≤

ˆ t

0

γohi(K)ds = tγohi(K)

|bjt| ≤
ˆ t

0

e−
´ t
s (r+γ̂uRj(bu,χ̂u))duγohj(K)ds ≤

ˆ t

0

γohj(K)ds = tγohj(K),

where we have used that the exponential term is less than 1. Imposing that the right-hand

sides above are themselves smaller than K leads us to T (γo;K) := mini∈{1,...,5}
K

γohi(K)
> 0

such that (IVPbwd(λ̂)) with T < T (γo;K) by construction admits a unique solution satisfying

|b−6| < K for all λ ∈ Λ(ρ+K). Moreover, since T (γo;K) is independent of r, the statement

holds for all r ≥ 0; also T (γo;K) ∈ Ω(1/γo).51

51It is clear from the argument that α̃ is also uniformly bounded for all λ ∈ Λ(ρ+K). Also, the linearity of
the α̃-ODE (C.6) implies that the interval of existence is constrained only by the ODEs for bi, i ∈ {1, . . . , 5}.
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In what follows, assume T < T (γo;K). Lemma C.2 implies that λ ∈ Λ(ρ+K) 7→ b(·;λ)
is a well-defined function linking λ paths to corresponding solutions to the backward IVP.

We can then define the functional

q(λ) := (b̂1(·;λ), b̂3(·;λ)) + (B1(λ(·)),B3(λ(·)))

that for each λ delivers the induced “total” ‘β1’ and ‘β3’ forward-looking coefficients—the

centered components delivered by the previous IVP plus the myopic counterparts—that we

will use as an input in the learning ODEs below. (Clearly, each q(λ) function is a continuous

function of time.) The continuity of this functional is key for our fixed-point argument.

Step 3: The operator λ 7→ q(λ) is continuous and ||q(λ)||∞ < ρ+K for all λ ∈ Λ(ρ+K).

Let us show, more generally, that λ 7→ b̂(·;λ) is continuous; since λ 7→ Bi(λ(·)) is clearly

continuous due to βmi = βmi (χ(·)) being of class C1, i ∈ {1, 3}, the result will follow. To this

end, we make use of the following lemma, proved in the Supplementary Appendix.

Lemma C.3. Let X ⊆ Rn, Y ⊆ Rm and U ⊆ Rn be compact sets. Consider F : X×Y → U

of class C1 and ω : Y → X. Suppose Y ⊂ C([0, T ];Y ) is a collection of functions such that

for all y ∈ Y, the initial value problem IVP(y) defined by ẋt = F (xt, yt) and x0 = ω(y0)

admits a solution defined over [0, T ]. Then there exist constants k1 and k2 (depending on T )

such that for all y1, y2 ∈ Y, the corresponding solutions xi to IVP(yi) satisfy

||x1t − x2t ||∞ ≤ k1||ω(y10)− ω(y20)||∞ + k2 sup
s∈[0,T ]

||y1s − y2s ||∞, for all t ∈ [0, T ].

Now consider any λ1, λ2 ∈ Λ(ρ+K). We apply Lemma C.3 to: x = b; yi = λ̂i, i = 1, 2;

ω(·) = (0, 0, 0, 0, 0, αm(·)); F (xt, yt) := f λ̂(bt, t); and X and Y the hypercubes defined by the

uniform bounds on b and λ, respectively. Using that ||x||∞ = ||x̂||∞, we obtain

||b̂(·;λ1)− b̂(·;λ2)||∞ = sup
t∈[0,T ]

||bt(λ1)− bt(λ
2)||∞ ≤ k1|αm(λ1T )− αm(λ2T )|+ k2||λ1 − λ2||∞,

for some constants k1 and k2. Since λT 7→ αm(λT ) is continuous, it follows that ||b̂(·;λ1)−
b̂(·;λ2)||∞ → 0 as ||λ1 − λ2||∞ → 0, yielding the desired result.

Finally, ||q(λ)||∞ < ρ+K follows from ||b̂i(·;λ)||∞ < K and ||Bi(λT )||∞ < ρ, i = 1, 3.

Step 4: Construct a continuous self-map on Λ(ρ+K) using the IVP for the learning ODEs.

Take λ ∈ Λ(ρ+K) and define the IVP for λ = (λ1,λ2)

λ̇t = fq(λ)(λt, t) s.t. λ0 = (γo, 0), (IVPfwd(q(λ)))
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consisting of the two (forward) learning ODEs (13)-(14) that use as input q(λ) = (q1(λ), q2(λ))

playing the role of (β1, β3)—here, the first (second) entry of the system corresponds to the

γ-ODE (χ-ODE), while the boldface convention aims at distinguishing between inputs λ

via q and induced solutions λ to this IVP. Importantly, because for all λ ∈ Λ(ρ + K) the

function q(λ) is continuous in time, Lemma A.1 gives existence and uniqueness of a solution

to (IVPfwd(q(λ))) defined over [0, T ] that satisfies λt ∈ (0, γo]× [0, 1) for all such times.

Next, we argue that λ ∈ Λ(ρ +K). By construction, λ0 := (λ1,0,λ2,0) = (γo, 0), and as

noted above, λt ∈ (0, γo] × [0, 1) for all t ∈ [0, T ]. Moreover, from the γ-ODE and χ-ODE,

we have that

|λ̇1t| = | − λ2
1t([q2(λ)]t + [q1(λ)]tλ2t)

2

σ2
Y

| ≤ (γo)2(2[ρ+K])2/σ2
Y and similarly

|λ̇2t| ≤ γo
[
(2[ρ+K])2/σ2

Y + (|ûâθ|+ |ûaâ|(2[ρ+K]))2/σ2
X

]
for all t ∈ [0, T ]. Since the Lipschitz bounds in the definition of Λ(ρ + K) are satisfied,

λ ∈ Λ(ρ+K).

Finally, by Lemma C.3 applied to (IVPfwd(q(λ))) by setting x = λ, y = q(λ), ω(y0) =

(γo, 0), F (xt, yt) = fq(λ)(λt, t), X = [0, γo]× [0, 1] and Y = [−ρ−K, ρ+K]2, we conclude that

q 7→ λ(q) is continuous. Since λ 7→ q(λ) is continuous (Step 3), it follows that g(λ) := λ(q(λ))

is a continuous map from Λ(ρ+K) to itself.

Step 5: Show that g has a fixed point. By Step 1, Λ(ρ+K) is a nonempty, compact, convex

Banach space, and by Step 4, g is a continuous map from Λ(ρ+K) to itself. By Schauder’s

Theorem (Zeidler, 1986, Corollary 2.13), there exists λ∗ ∈ Λ(ρ+K) such that λ∗ = g(λ∗). It

is clear, by construction, that (λ∗, b̂(·;λ∗)), with b(·;λ∗) the solution to (IVPbwd(λ̂)) under

λ = λ∗, is a solution to the centered-augmented BVP under study. Finally, maximizing

T (γo;K) over K > 0 yields a T (γo) > 0 that has the form C/γo.

Verification: Recover first a solution to the original BVP, and then to the full HJB equation.

We verify that the solution to the centered-augmented BVP induces a solution to the original

BVP stated in the ‘Core subsystem’ section. To do this, we first note that any solution

to the former BVP must satisfy the identity α̃ ≡ α, where αt := β1tχt + β3t, β1t := βc1t + βm1t

and β3t := βc1t+β
m
1t—consequently, (γ, χ, β⃗c, ṽ6, ṽ8) solves the centered system defined in the

‘Centering’ step. Indeed, using the definition of the myopic coefficients as well as the ODEs

for χ, βc1t, and β
c
3t yields that α in backward form satisfies

α̇t = −rα̃t(αt/αmt − 1) + αt
γthα(β⃗

c, ṽ6, ṽ8, χt)

σ2
Xσ

2
Y (uaθ + uaâûâθχt)n1,α(1− uaâûaâχt)n2,α(1− uaâûaâ)n3,α

.
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Relative to (C.6), therefore, the r-term as well as the last fraction multiplying α coincide.

Call this last term Ht—a continuous function of time—and observe that p := α− α̃ satisfies

the ODE ṗt = ptHt with initial condition p0 = 0 due to α0 = α̃0 = αm0 (recall that time is

being reversed). By uniqueness, pt ≡ 0 for all t ∈ [0, T ], confirming that α ≡ α̃.

Given this equivalence, it follows that (γ, χ, β1, β̃2, β3, ṽ6, ṽ8) = (λ∗, b̂−6(·;λ∗) + B−6(λ
∗))

solves by construction the BVP stated in the ‘Core subsystem’ section. Moreover, as

argued in Step 4 in the proof of Theorem C.1, γ > 0 and χ < 1, so we can invert the change

of variables (β̃2, ṽ6, ṽ8) = (β2/(1 − χ), v6γ/(1 − χ)2, v8γ/(1 − χ)) to obtain (β2, v6, v8). And

since α = α̃ never vanishes (see ‘Auxiliary variable’ section) and γ > 0, we can recover

the rest of the coefficients as explained in the ‘Core subsystem’ section.

That our resulting V is effectively the sender’s value function follows directly from The-

orem 3.5.2 in Pham (2009): specifically, (i) since V is quadratic, it trivially satisfies the

growth condition in the theorem; (ii) V satisfies the HJB equation by construction; and (iii)

the controlled dynamics (M,L) are linear in equilibrium with coefficients that are of class

C1, and hence they admit a unique strong solution.

To verify the admissibility of the (induced) on-path strategy profile, note that, along

the path of play, the laws of motion for M̂ and L, (A.1) and (A.6), are given by dXt =

[α0t + α2tLt + α3tθ]dt+ σY dZ
Y
t and dYt = [δ0t + δ1tM̂t + δ2tLt]dt+ σY dZ

Y
t . Thus, these on-

path dynamics can be written as dXt = AX(t,W )dt+σXdZ
X
t and dYt = AY (t,W )dt+σY dZ

Y
t ,

where W := (θ,X, Y )—in other words, W satisfies a vector stochastic differential equation

(SDE) (where the θ SDE trivially has a drift and volatility identically equal to zero). The

nature of this vector SDE is functional, in that AX(t,W ) and AY (t,W ) carry functions in the

second argument: these operators are integrals that depend on values of X and/or Y for all

times prior to t (i.e., AX(t, ·) and AY (t, ·) are non-anticipative linear functionals). The initial

condition of this SDE is (θ0, X0, Y0) = (θ, 0, 0) (recall that θt = θ for all t ≥ 0 in this SDE). By

the extension of Theorem 4.6 in Liptser and Shiryaev (1977) to multidimensional processes

(see the note on p. 143), this SDE admits a unique strong solution; call it W ∗ := (X∗, Y ∗).

Letting (Ω,F ,P) the probability space in which (ZX , ZY ) is a standard two-dimensional

Brownian motion, the law of this process, P ◦W−1(·), where W−1 denotes the inverse image

of W , is a distribution on the measurable space C([0, T ])×C([0, T ]) equipped with Borel σ-

algebra. Thus, there is a unique solution in a probability-law (weak) sense that is consistent

with the players equilibrium strategies.

Finally, by the same result in Liptser and Shiryaev (1977), the fact that (θ, 0, 0) has a

finite second moment ensures not only that (X∗, Y ∗) inherits that property, but also the

associated second moments can be uniformly bounded over [0, T ]. Since the coefficients in

the strategies are of class C1, we conclude that the players’ on-path strategies are square
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integrable. Progressive measurability then follows from (X∗, Y ∗) having continuous paths

and being adapted (due to the non-anticipative nature of the SDE). Thus, the (on-path)

strategy profile is admissible in the sense of Section 2.

We extend our existence result to the case of terminal payoffs in the following corollary,

proved in the Supplementary Appendix. The bound on curvature ensures that we can select

an equilibrium of the static terminal game with sufficient regularity for our method.

Corollary C.2. There exist Cψ ∈ {−∞}∪ (−∞, 0) and CT > 0, both independent of (r, γo),

such that if ψââ ∈ (Cψ/γ
o, 0] and T < CT/γ

o, a linear Markov equilibrium exists for all

r ≥ 0. Moreover, α3 never vanishes.

Appendix D: Proofs for Section 6

Before proving Proposition 8, we describe how our fixed point method can accommodate a

receiver with general discount rate r̂ ≥ 0. We first need laws of motion for (M̂, L) for the

receiver’s best response problem, which we obtain from (A.1) and (A.10), using â′t in dXt.

Lemma D.1. From the receiver’s perspective, if he follows (â′t)t∈[0,T ],

dM̂t =
α3tγ1t
σY

dZt (D.1)

dLt =
γXt χtδ1t
σ2
X

[â′t − (δ0t + [δ1t + δ2t]Lt) + σXdZ
X
t ], (D.2)

where Zt :=
1
σY

[Yt −
´ t
0
(α0s + α2sLs + α3sM̂s)ds] is a Brownian motion.

Generalizing the approach The receiver’s HJB equation then reads,

r̂V̂ = sup
â′

{
û(α0t + α2tℓ+ α3tm̂, â

′, m̂) + γt

(
ûaa
2
α2
3t +

ûθθ
2

+ ûaθα3t

)
+ V̂t

+µM̂ V̂m̂ + µL(â
′)V̂ℓ +

σ2
M̂

2
V̂m̂m̂ +

σ2
L

2
V̂ℓℓ

}
, t < T,

(D.3)

where µM̂ (= 0), σM̂ , µL(â
′), and σL are the drift and noise in (D.1) and drift and noise

in (D.2), respectively. (There is no V̂m̂ℓ term since the future innovations in M̂ and L are

uncorrelated from the receiver’s perspective.) Morevoer, with an LQG structure we guess a

solution of the form

V̂ (m̂, ℓ, t) = v̂0t + v̂1tm̂+ v̂2tℓ+ v̂3tm̂
2 + v̂4tℓ

2 + v̂5tm̂ℓ, (D.4)
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where vj·, j = 0, . . . , 5, are differentiable functions of time. Imposing that the conjectured

linear strategy for the receiver satisfies his first order condition, we obtain three equations

relating (δ0, δ1, δ2) to (β⃗, v̂2, v̂4, v̂5). Analogously for the sender, we get four equations relating

(β0, β1, β2, β3) to (δ⃗, v2, v5, v7, v9). The combined system of seven equations can be solved to

obtain expressions for (β⃗, δ⃗) in terms of (v2, v5, v7, v9, v̂2, v̂4, v̂5) and (γ, χ). (Our bounding

exercise will ensure that these expressions have denominators bounded away from zero.)

Substituting these equations into both players’ HJB equations and the laws of motion

for (γ, χ), we obtain a system of ODEs in (v⃗, ⃗̂v) := (v0, . . . , v9, v̂0, . . . , v̂5) and (γ, χ). The

induced BVP has viT = v̂jT = 0 for i = 0, . . . , 9 and j = 0, . . . , 5 as terminal conditions

(absent lump sum payoffs at T ), while the initial conditions (γ0, χ0) = (γo, 0).

To conclude, this BVP can be transformed into a fixed point problem in (γ, χ) using

identical steps. Indeed, after an appropriate change of variables (see spm.nb) the (new)

ODEs for x ∈ {v0, . . . , v9, v̂0, . . . , v̂5} can be written in backward form as

ẋt = −xtr + γtR(v⃗t, ⃗̂vt, γt, χt), x0 = 0, (D.5)

where R is a ratio of polynomials with denominator bounded away from zero when (v⃗, ⃗̂v) is

bounded by K sufficiently small. Hence, solutions exist for sufficiently small K. As in the

proof of Theorem C.1, such a bound K also yields Lipschitz bounds on γ and χ to use in

defining the domain for our fixed point argument. The form of (D.5) implies that, starting

with (γ, χ) in this domain, there exists T (γo) ∈ Ω(1/γo) independent of r such that solutions

(v⃗, ⃗̂v) traced backward are bounded by K. In turn, (γ, χ) traced forward lie in the original

domain, creating a self-map.

Proof of Proposition 8. It suffices to show that, given any LME when the receiver is myopic,

each player’s strategy is still a best response to the other player’s strategy when the receiver

is forward-looking. Since the best-response property already holds for the sender, we focus

on the receiver. The receiver’s HJB equation under a prediction problem is

r̂V̂ = sup
â′

{
−1

2
(c0 + c1m̂+ c2[α0t + α3tm̂+ α2tℓ]− â′)2 − 1

2
(c1 + c2α3t)

2γt + V̂t

+µM̂ V̂m̂ + µL(â
′)V̂ℓ +

σ2
M̂

2
V̂m̂m̂ +

σ2
L

2
V̂ℓℓ

}
, t < T,

(D.6)

where we have used Êt[at] = α0t + α3tM̂ + α2tL and Êt[(θ − M̂t)
2] = γt, while for t = T ,

V̂ (m̂, ℓ, T ) = sup
â′

1

2

{
−(c0 + c1m̂+ c2[α0T + α3T m̂+ α2T ℓ]− â′)2 − (c1 + c2α3T )

2γT
}
. (D.7)

56



Now let (δm0t , δ
m
1t , δ

m
2t) = (c0 + c2α0t, c1 + c2α3t, c2α2t) denote the myopic strategy coefficients

and âmt = δm0t+δ
m
1tM̂t+δ

m
2tLt the myopic policy. It is easy to see that âmT attains the supremum

in (D.7) and the first quadratic term vanishes, so (D.7) yields the terminal condition

V̂ (m̂, ℓ, T ) = −1

2
(c1 + c2α3T )

2γT . (D.8)

Note that this terminal payoff is independent of (m̂, ℓ). In the same spirit, we conjecture a

solution to the HJB where the value function depends only on time. In this case, (D.6) re-

duces to r̂V̂ = supâ′
{
−1

2
(c0 + c1m̂+ c2[α0t + α3tm̂+ α2tℓ]− â′)2 − 1

2
(c1 + c2α3t)

2γt + V̂t

}
.

It is easy to see that for all t < T , the right hand side is maximized at the myopic policy ât,

at which point the first quadratic loss term vanishes, so the HJB equation further reduces to

r̂V̂ = −1

2
(c1 + c2α3t)

2γt + V̂t. (D.9)

Simple integration using (D.8) and (D.9) yields the solution

V̂ (t) = −1

2

ˆ T

t

e−r̂(s−t)(c1 + c2α3s)
2γs dt−

1

2
e−r̂(T−t)(c1 + c2α3T )

2γT , (D.10)

which is indeed a function only of time. We conclude that the myopic policy is optimal.

Proof of Proposition 9. Suppose δ1 = ûaâα3, in which case the χ-ODE boils down to

χ̇t = γtα
2
3t

(
1− χt
σ2
Y

− (ûaâχt)
2

σ2
X

)
=: −γtα2

3tQ(χt).

Conjecture f(χt) = γt for all t ≥ 0, where f : [0, χ̄) → [0, γo], some χ̄ ∈ (0, 1], is differentiable.

In this case, f ′(χt)χ̇t = γ̇t. When α3t ̸= 0, f ′(χt)
f(χt)

= Σ
Q(χt)

. Hence, we solve the ODE
f ′(χ)
f(χ)

= Σ
Q(χ)

for χ ∈ (0, χ̄) where f(0) = γo.

To this end, let c2 :=

√
1/σ4

Y +4(ûaâ)2/[σXσY ]2−1/σ2
Y

2(ûaâ/σX)2
and −c1 :=

−
√

1/σ4
Y +4(ûaâ)2/[σXσY ]2−1/σ2

Y

2(ûaâ/σX)2

be the roots of the convex quadratic Q above. Note that these are well-defined since ûâθ

and Assumption 1 part (ii) imply that ûaâ ̸= 0. Clearly, −c1 < 0 < c2. Also, c2 ≤ 1

as Q(1) ≥ 0. Thus, Σ
Q(χ)

= − σ2
XΣ

(ûaâ)2(c1+c2)

[
1

χ+c1
− 1

χ−c2

]
is well-defined (and negative) over

[0, c2) with 1/(χ + c1) > 0 and −1/(χ − c2) > 0 over the same domain. We can then set

χ̄ = c2 and solve
´ χ
0

f ′(s)
f(s)

ds = − σ2
XΣ

(ûaâ)2(c1+c2)
log
(
χ+c1
c2−χ

c2
c1

)
, which yields the decreasing function

f(χ) = f(0)
(
c1
c2

)1/d (
c2−χ
χ+c1

)1/d
, where 1/d = σ2

XΣ/[(ûaâ)
2(c1 + c2)] > 0. Imposing f(0) = γo

and inverting yields χ(γ) = f−1(γ) as in the lemma. Note that χ(γo) = 0 and χ(0) = c2.
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We now verify that χ(γ) satisfies the χ-ODE (even when α3 = 0). We have

d(χ(γt))

dt
=

α2
3tγt

σ2
Y [c1 + c2(γ/γo)d]2

c1c2d[c1 + c2]

(
γt
γo

)d
.

By construction, moreover, c1c2 = c1 − c2 =
σ2
X

σ2
Y (ûaâ)2

, which follows from equating the first-

and zero-order coefficients in Q(χ) = û2aâχ
2/σ2

X + χ/σ2
Y − 1/σ2

Y = û2aâ(χ − c2)(χ + c1)/σ
2
X .

Thus, dc1c2 = c1 + c2. On the other hand,

[ûaâχ(γ)]
2

σ2
X

=
û2aâ
σ2
X

[
c1c2

1− (γ/γo)d

c1 + c2(γ/γo)d

]2
=
c21(1− c2)

σ2
Y

[
1− (γ/γo)d

c1 + c2(γ/γo)d

]2
where we used that c21c

2
2/σ

2
X = c21(1−c2)/σ2

Y follows from û2aâc
2
2/σ

2
X = (1−c2)/σ2

Y by definition

of c2. Thus, the right-hand side of the χ-ODE evaluated at our candidate χ(γ) satisfies

γ1α
2
3

(
1− χ

σ2
Y

− (ûaâχ)
2

σ2
X

) ∣∣∣∣∣
χ=χ(γ)

=
α2
3γ1
σ2
Y

(
1− χ− c21(1− c2)

[
1− (γ/γo)d

c1 + c2(γ/γo)d

]2)
.

Thus, using that c1c2d = c1 + c2 in our expression for d(χ(γt))/dt, it suffices to show that

[c1 + c2]
2
(
γt
γo

)d
= (1 − χ)[c1 + c2(γ/γ

o)d]2 − c21(1 − c2)[1 − (γ/γo)d]2. Using that χ[c1 +

c2(γ/γ
o)d] = 1− (γ/γo), it is easy to conclude that this equality reduces to three equations

0 = c21−c21c2−c21+c21c2, (c1+c2)2 = 2c1c2−c1c2(c2−c1)+2c21(1−c2) and 0 = c22+c1c
2
2−c21(1−

c2), capturing the conditions on the constant, (γ/γo)d and (γ/γo)2d, respectively. The first

condition is trivially satisfied, and the third is easy to verify; by canceling common terms, the

second condition is also a rearrangement of this identity. Thus, χ(γ) as postulated satisfies

the χ-ODE; by uniqueness, χ = χ(γ).

We now prove the final statement of the lemma. When γt ∈ (0, γo], we have χt =
c1c2(1−[γt/γo]d)
c1+c2[γt/γo]d

< c1c2
c1

= c2. Now c2 simplifies to

√
σ4
X+4σ2

Y σ
2
X û

2
aâ−σ

2
X

2û2aâσ
2
Y

=
4σ2

Y û
2
aâ

2û2aâσ
2
Y

(√
1+4σ2

Y û
2
aâ/σ

2
X+1

) ,
which by inspection is increasing in σX and has limits lim

σX→0
c2 = 0 and lim

σX→+∞
c2 = 1
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