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S.1 Monetary Policy Game (Section 4.1): Proofs of Propo-

sitions 3 and 4

In this section, we prove Propositions 3 and 4. We often use NX to refer to the case σX = +∞,
where the X signal is pure noise, and pub to refer to the σX = 0 case.

We begin by proving Proposition 3(i), since only this part relates to the interior case.

S.1.1 Proof of Proposition 3 part (i)

From the proof of Proposition 2, for σX ∈ (0,+∞), β̇0 converges uniformly to kγo

4σ2
Y

as T → 0.
For the public case, we borrow the β0-ODE (to be derived later)

β̇0t = β3t[2r(β0t − k) + k(β1t + β3t)γt/σ
2
Y ], (S.1)

where β1t + β3t = 1, as we also prove later. Note that this ODE can also be obtained by
setting χt = 0 and then σX = 0 in the β0-ODE in the proof of Proposition 2 and replacing
α2
3t attached to k with β3t(β1t+β3t). The reason for the difference is that in the interior case,

the receiver plays δ1 = α3, where as in the public case, the receiver plays δ1 = β1 + β3 = 1.
Following the same logic as in the interior case, this converges uniformly to kγo

2σ2
Y

as T → 0.
(The reason the denominator carries a factor of 2 rather than 4 is again because the receiver
places full weight on M̂ in the public case, rather than splitting this weight between M̂ and
L.) Thus, there exists T † such that for all T < T †, β̇0 is strictly higher in the public case.
Since β0T = k for both cases, it follows that for sufficiently small T , β0t is higher in the
interior case than in the public case for all t < T .

Before returning to prove the rest of Proposition 3, we prove the following proposition,
which subsumes Proposition 4 and establishes the properties stated in footnote 26.

Proposition S.1. If σX ∈ {0,+∞}, then an LME exists for all T > 0 and r ≥ 0. Moreover,

(i) If σX = 0, then at = βpub
0t + βpub

3t θ + (1− βpub
3t )M̂t and ât = βpub

0t + M̂t, where dβpub
3t

dt
< 0,

βpub
3t ∈ (1/2, 1), and βpub

0t < k for t < T ; and (βpub
0T , β

pub
3T ) = (k, 1/2).

(ii) If σX = +∞, then at = βNX
0t +αNX

3t θ+(1−αNX
3t )µ, where αNX

3t ∈ (1/2, 1) for all t ∈ [0, T ],
βNX
0t < k for t < T , and βNX

0T = k. Also, dαNX
3t

dt
> 0 if r > 0 (and constant for r = 0).

If r = 0, then βpub
3,0 > αNX

3,0 and βpub
3T < αNX

3T .
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S.1.2 Proof of Proposition S.1: σX = 0 Case

The first-order condition applied to the right hand side of the HJB equation presented in
Appendix B and applied at the conjectured strategy a∗ := β0t + β1tm+ β3tθ reads

0 = −1

2
(β0t + β1tm+ β3tθ − θ)− 1

2
[β3t(θ −m)− k] + (β3tγt/σ

2
Y )[v2t + 2mv4t + θv5t]. (S.2)

Provided β3t, γt > 0 (as we verify later), (v2t, v4t, v5t) =
(
σ2
Y (β0t−k)
2β3tγt

,
σ2
Y (β1t−β3t)
4β3tγt

,
σ2
Y (2β3t−1)

2β3tγt

)
,

due to the FOC holding for all (θ,m, t) ∈ R2 × [0, T ]. And since viT = 0 for i ∈ {0, . . . , 5},
we deduce that (β0T , β1T , β3T ) = (k, 1/2, 1/2).

Inserting a∗ into the HJB equation, and using the previous expressions for (v2t, v4t, v5t)

to replace (v2t, v4t, v5t, v̇2t, v̇4t, v̇5t), yields an equation in β⃗ := (β0, β1, β3) and ˙⃗
β. Grouping by

coefficients (θ,m, θ2,..., etc.) in the latter yields a system of ODEs for (v0, v1, v3, β0, β1, β3):

β̇0t = β3t

[
2r(β0t − k) +

kγt(β1t + β3t)

σ2
Y

]
(S.3)

β̇1t = β3t

[
r(2β1t − 1) +

β1tβ3tγt
σ2
Y

]
(S.4)

β̇3t = β3t

[
r(2β3t − 1)− β1tβ3tγt

σ2
Y

]
(S.5)

along with v̇0t = k2

4
+rv0t+

β2
0t

4
+ β3t

4
γt(β3t−β1t), v̇1t = rv1t− β0t

2
, and v̇3t = 1

4
+rv3t− β2

3t

2
, with

terminal conditions (v0T , v1T , v3T , β0T , β1T , β3T ) = (0, 0, 0, k, 1/2, 1/2), coupled with γ̇t =

−β2
3tγ

2
t /σ

2
Y and initial condition γ0 = γo. After we solve the subsystem (β1, β3, γ), one easily

obtains β0 from its ODE and then (v0, v1, v3), as the latter ODEs are uncoupled from one
another and linear in themselves.

We now solve the BVP in (β1, β3, γ) using a backward IVP: abusing notation,

β̇1t = −β3t
[
r(2β1t − 1) +

β1tβ3tγt
σ2
Y

]
(S.6)

β̇3t = −β3t
[
r(2β3t − 1)− β1tβ3tγt

σ2
Y

]
(S.7)

γ̇t =

(
β3tγt
σY

)2

(S.8)

with initial conditions β1,0 = β3,0 =
1
2

and γ0 = γF ≥ 0.
We shall argue via the intermediate value theorem that there exists γF such that γT = γo,

thus solving the BVP. To that end, we make use of the following lemma, which establishes
uniform bounds and other properties for the equilibrium coefficients. Define Bpub

t := β1t+β3t.
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Lemma S.1. Fix any γF ≥ 0. If a solution to the backward system exists over [0, T ], then
any such solution must have the following properties. If γF > 0, then (i) Bpub

t = 1 for all
t ∈ [0, T ], (ii) β3t ∈ (1/2, 1) and β1t ∈ (0, 1/2) for all t ∈ (0, T ], (iii) β̇3 > 0 is while β̇1 < 0,
and (iv) γ is strictly increasing. If γF = 0, then β1t = β3t =

1
2

and γt = 0 for all t ∈ [0, T ].

Proof of Lemma S.1. Because the system (S.6)-(S.8) is C1, the solution is unique when it
exists. If γF = 0, it is clear by inspection that (β1, β3, γ) = (1/2, 1/2, 0) (uniquely) solves
the IVP, so assume hereafter that γF > 0. We first claim that β3 > 0. Indeed, let fβ3(t, β3t)
denote the RHS of the β3-ODE in (S.7). Letting xt := 0 for all t ∈ [0, T ], we have β3,0 =

1/2 > x0 and β̇3t − fβ3(t, β3t) = 0 = ẋt − fβ3(t, xt); by the comparison theorem, the claim
follows. Now, add the ODEs that β1 and β3 satisfy to get Ḃpub

t = 2rβ3t(1 − Bpub
t ) with

Bpub
0 = 1; because the RHS is of class C1, it has a unique solution, which is clearly Bpub = 1.

Hence, β1 + β3 = 1 and β̇3t = β3t

[
r(1− 2β3t) +

β3t(1−β3t)γt
σ2
Y

]
, and we maintain the label

fβ3(t, β3t) for its RHS. Defining xt := 1 for all t ∈ [0, T ], then, x0 = 1 > β3,0 = 1
2
, and

β̇3t − fβ3(t, β3t) = 0 ≤ r = ẋt − fβ3(t, xt); thus, β3 < 1 and β1 = 1− β3 > 0.
Since β3 > 0, γ is clearly strictly increasing, and hence γt > 0 for all t ∈ [0, T ]. Now,

β̇3t =
1
2

[
0 + γt

4σ2
Y

]
> 0 whenever β3t = 1

2
, and thus β3t > 1/2 and β1t < 1/2 for all t ∈ (0, T ].

We now turn to (iii). Since β̇1t + β̇3t = 0, we just show that β̇3 > 0; in turn, it suffices
to show that Ht := β̇3t/β3t = r(1 − 2β3t) +

β3t(1−β3t)γt
σ2
Y

> 0 for all t ∈ [0, T ]. For t = 0,
H0 =

γ0
4σ2

Y
> 0 immediate from inspection. For t > 0, by solving Ht = 0 for r (which is valid

as β3t ̸= 1/2 for t > 0), whenever Ht = 0, it must be that Ḣt =
(1−β3t)β3

3tγ
2
t

σ4
Y

> 0. It follows
that Ht > 0 for all t as desired.

Given the uniform bounds established in Lemma S.1, we solve the BVP through a shooting
step, arguing by contradiction as in Bonatti et al. (2017). Note that if γF = 0, the IVP has
the (unique) static solution. Define

γ̄ := sup{γ̃F > 0 | a solution to the IVP exists over [0, T ] for all γF ∈ (0, γ̃F )}.

Since the right-hand side of the equations that comprise the IVP are of class C1, the
solution is unique when it exists, and there is continuous dependence of the solution on the
initial conditions; in particular, the terminal value γT is continuous in γF (see Theorem on
page 397 in Hirsch et al. (2004)). Hence if there exists γF ∈ (0, γ̄) such that γT (γF ) ≥ γo, by
the intermediate value theorem there exists a γF ∈ (0, γ̄) such that γT (γF ) = γo, allowing
us to construct a solution to the BVP.

Suppose then that for all γF ∈ (0, γ̄), γT (γF ) < γo. In particular, because γt is non-
decreasing in the backward system for any initial condition, we have that γt ∈ (0, γo) does
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not explode and the uniform bounds from the lemma apply. We first claim that a so-
lution to the IVP for γF = γ̄ must exist over [0, T ]. To see this, let [0, T̃ ) denote the
maximal interval of existence, and suppose by way of contradiction that T̃ ∈ (0, T ]. Thus,
there must be some function x(·, γ̄) which explodes at T̃ , and so, for t̃ ∈ (0, T̃ ) sufficiently
close to T̃ , we have x(t̃, γ̄) /∈ [0, 1]. But for any sequence (γFn )n∈N taking values in (0, γ̄)

such that γFn ↑ γ̄, by continuity of solutions with respect to initial conditions, we have
x(t̃, γ̄) = limn→∞ x(t̃, γFn ) ∈ [0, 1], a contradiction. We conclude that a solution to the IVP
for γF = γ̄ must exist over [0, T ], and hence, by the extensibility of the solutions (Theorem
on page 397 in Hirsch et al. (2004)), that a solution must also exist for all γF ∈ [γ̄, γ̄ + ϵ),
some ϵ > 0, thereby violating the definition of γ̄ as a supremum.

Thus, a solution to the BVP exists. Moreover, Lemma S.1 establishes (for reversed
time) the properties of β3 stated in Proposition S.1. Since β1t + β3t = 1, we have at =

β0t + β3tθ + (1 − β3t)M̂t, which implies ât = Êt[at] = β0t + M̂t. As β3 ≥ 1/2 is finite, we
have β3, γ > 0 allowing us to recover (v2, v4, v5) through the identities stated earlier, and
then (β0, v0, v1, v3) are pinned down as argued above. As for the claims about β0, we have
β0T = k, and from (S.3), using that β1t+ β3t = 1, whenever β0t = k we have β̇0t = kβ3tγ

σ2
Y

> 0,
and thus β0t must lie below k until time T .

S.1.3 Proof of Proposition S.1: σX = +∞ Case

Proof of Lemma B.1. Anticipating at = α0t+α2tµ+α3tθ, the receiver’s belief is ∼ N (M̂t, γt)

where dM̂t =
α3tγt
σ2
Y

[dYt − (α0t + α2tµ + α3tM̂t)dt] and γ̇t = −γ2t α
2
3t

σ2
Y

. Thus, M̂t = µR(t, 0) +´ t
0
R(t, s)α3sγs

σ2
Y

[(as − α0s − α2sµ)ds+ σY dZ
Y
s ] and Mt = µR(t, 0) +

´ t
0
R(t, s)α3sγs

σ2
Y

(as − α0s −

α2sµ)ds where R(t, s) = exp(−
´ t
s

α2
3uγu
σ2
Y
du). Solving for M after inserting at = β0t+ β1tMt+

β2tµ+β3tθ, and imposing the representation, it is easy to conclude that Mt = χtθ+(1−χt)µ
will hold if and only if χ̇t =

α2
3tγt
σ2
Y

(1−χt). By arguments analogous to those used for Lemma
A.1, the (γ, χ)-ODE pair admits a unique solution, and it satisfies χ = 1− γ/γo.

As noted in Appendix B, fixing µ, (θ,Mt, t) are the relevant states for the sender. In more
detail, the receiver expects that the sender is always on path and therefore to be playing
at = α0t+α2tµ+α3t by the representation. The receiver’s best response is thus ât = Êt[at] =
α0t+α2tµ+α3tM̂t. Taking an expectation of the sender’s flow payoff 1

4
[−(at−θ)2−(at−ât−k)2]

then yields that (θ,Mt, t) is the relevant state on and off path. (Indeed, expanding the
squares in the previous expression, the only nontrivial component is Et[â2t ], which makes
Et[M̂2

t ] appear; however, Et[M̂2
t ] =M2

t + Et[(M̂t −Mt)
2] =M2

t + γtχt at all histories.1)

1From the proof of Lemma B.1, Et[(M̂t − Mt)
2] = Et[(

´ t
0
R(t, s)α3sγs

σY
dZY

s )2] =
´ t
0
R(t, s)2

α2
3sγ

2
s

σ2
Y

ds =
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The HJB equation and the law of motion for γ yields a core BVP consisting of (β1, β2, β3, γ).
Using the same method used for the σX = 0 case, we construct a backward IVP version of
our original BVP that has a parametrized initial condition γF for the γ−ODE:

β̇1t = α3t(2σ
2
Y )

−1 ×
{
rσ2

Y − 2β1t[β3tγt + rσ2
Y (2− χt)] + 2β2

1tγt(1− χt)
}

(S.9)

β̇2t = α3t(2σ
2
Y )

−1 ×
{
−2rσ2

Y β2t(2− χt) + rσ2
Y (1− χt)− 2γtβ

2
1t(1− χt)

}
(S.10)

β̇3t = α3t(2σ
2
Y )

−1 ×
{
rσ2

Y (2− χt) + 2β3t[β1tγt − rσ2
Y (2− χt)]

}
(S.11)

γ̇t = α2
3tγ

2
t /σ

2
Y (S.12)

with initial condition (β1,0, β2,0, β3,0, γ0) = ( 1
2(2−χ0)

, 1−χ0

2(2−χ0)
, 1
2
, γF ) and where χ = 1− γ/γo.

We aim to prove that there exists γF ∈ (0, γo) such that the IVP has a (unique) solution
which satisfies γT = γo. (γF = 0 cannot work, as (β1, β2, β3, γ) = (1/2, 0, 1/2, 0) is the unique
solution.) As argued in the proof of the σX = 0 case, it suffices to show that the system is
uniformly bounded if γt ∈ [0, γo] over [0, T ].

The α3-ODE is α̇3t = fα(t, α3t) := rα3t[1 − α3t(2 − χt)] and α3,0 = 1
2−χ0

> 0. By the
comparison theorem, α3 > 0; hence, by the same argument as in the proof of Lemma S.1, γ
is increasing (in the backward system), so χ = 1 − γ/γo < 1 is decreasing. As α3,0 = 1

2−χ0

and α̇3,0 >
d
dt

(
1

2−χt

)
|t=0, the comparison theorem can be applied to α3 and 1/(2 − χ) to

show α3t ≥ 1/(2 − χt) ≥ 1/2, with both inequalities strict for all t ∈ (0, T ], for all r ≥ 0.
And α3t ≥ 1/(2 − χt) implies α̇3t ≤ 0 (and hence α̇3t ≥ 0 in the forward system) for all
t ∈ [0, T ], with strict inequality for t ∈ (0, T ] if and only if r > 0; for r = 0, α3 is constant.
It follows that for all t ∈ (0, T ], α3t ≤ α3,0 =

1
2−χ0

< 1.
Now, BNX := β1 + β2 + β3 satisfies ḂNX

t = rα3t(2 − χt)(1 − BNX
t ) with BNX

0 = 1; thus
BNX ≡ 1. This establishes that in any LME, at = β0t + (1− α3t)µ+ α3tθ.

Next, we establish uniform bounds on β1 and β3 (and hence β2). Toward showing β1 > 0,
observe that the RHS of the β1-ODE can be written as fβ1(t, β1) of class C1. Letting x := 0,
we have β10 > x0 = 0 and ẋt − fβ1(t, xt) = 0 − α3t

2σ2
Y
rσ2

Y ≤ 0 = β̇1t − fβ1(t, β1t) and thus
by the comparison theorem, β1 > x = 0. This implies that β3 = α3 − β1χ ≤ α3 < 1. We
now show β3t > 1/2 and β1t < βm1t :=

1
2(2−χt)

< 1 for all t ∈ (0, T ]. For the former, recall
that β30 = 1/2, and whenever β3t = 1/2, β̇3t = α3tβ1tγt

2σ2
Y

> 0; it follows that β3t > 1/2 for all
t ∈ (0, T ]. Now β10 = βm10 < 1, and for all t ∈ [0, T ) (where χt > 0),

β̇m1t − fβ1(t, βm1t) =
γt (β3t[2− χt]− [1− χt]) (2β3t[2− χt] + χt)

4σ2
Y (2− χt)4

> 0 = β̇1t − fβ1(t, β1t),

´ t
0
exp(2

´ t
s

γ̇u

γu
du)(−γ̇s)ds =

´ t
0
(γt/γs)

2
(−γ̇s)ds = γ2

t (1/γt − 1/γo) = γtχt.
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from which β̇m10 > β̇10. By the comparison theorem, β1t < βm1t < 1 for all t ∈ (0, T ].
Via the identity BNX ≡ 1, the uniform bounds just established imply uniform bounds

on β2. Thus, by the same one-dimensional shooting argument used for the σX = 0 case, a
solution to the BVP for (β1, β2, β3, γ) exists.

Going forward in time once again, β0 is uniquely determined by the terminal condition
β0T = k and ODE β̇0t = α3t

[
(2− χt)r(β0t − k) + kα3tγt

σ2
Y

]
which is linear in β0. Since the

right hand side reduces to kα2
3tγt
σ2
Y

whenever β0t = k, we have β0t < k for all t ∈ [0, T ).
Now α3 > 0, and further, γ > 0 since α3 is finite. Hence, from (β0, β1, β2, β3), the

coefficients (v2, v5, v7, v9) are backed out directly as in the proof of Theorem 1. The ODEs
for the remaining value function coefficients are linear and uncoupled, so they also have
unique solutions. Thus, we have solved the HJB equation and characterized an LME.

S.1.4 Proof of Proposition S.1: Comparison of Signaling Coeffi-

cients

The ranking of signaling coefficients at time T is immediate: we have βpub
3T = 1/2 > 1/(2−

χT ) = αNX
3T (independent of the discount rate). To establish the ranking at time 0 for r = 0,

we use two lemmata that provide closed-form solutions.

Lemma S.2 (Closed-form solution: public case, r = 0). For r = 0, the monetary policy
game has a unique LME for the public case, and (β0, β1, β3, γ) satisfy

β0t = k

[
1− ln

(
2σ2

Y

2σ2
Y − γT (T − t)

)]
, β1 ≡ 1− β3

γt =
γT
2

+
1

2
γT

− T−t
σ2
Y

, β3t =
1

2− γT (T−t)
2σ2

Y

, and γT =
γoT + 2σ2

Y −
√

(γoT )2 + 4σ4
Y

T
.

Proof. Observe that β̇3tγt+β3tγ̇t =
β2
3tγ

2
t

σ2
Y
. Hence, define Πt := β3tγt, which has ODE Π̇t =

Π2
t

σ2
Y

with initial condition Π0 = β3,0γ
F,Pub = γF,Pub/2, where the variable γF,Pub denotes our aux-

iliary parameter γF introduced earlier, for this special public case. The solution to this ODE

is Πt =
[

2
γF,pub − t

σ2
Y

]−1

. Substitute Π into γ̇t = −β2
3tγ

2
t

σ2
Y

to obtain γ̇t =
1
σ2
Y

[
2

γF,pub − t
σ2
Y

]−2

which implies γt = Cγ +
[

2
γF,pub − t

σ2
Y

]−1

. As γ0 = γF,pub, we have Cγ = γF,pub/2 and thus

γt =
γF,pub

2
+

[
2

γF,pub − t

σ2
Y

]−1

. (S.13)
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Moreover, γT = γo = γF,pub

2
+
[

2
γF,pub − T

σ2
Y

]−1

, which is equivalent to the quadratic T
2

(
γF,pub

)2−
(γoT + 2σ2

Y ) γ
F,pub + 2σ2

Y γ
o = 0. The quadratic on the LHS is convex and evaluates to

2σ2
Y γ

o > 0 at γF,pub = 0 and evaluates to − (γo)2 T/2 < 0 at γF,pub = γo, so there is a
unique solution in (0, γo) which in the forward system is γT as in the proposition statement.
Substituting this into (S.13) and returning to the forward system by replacing t with T − t

yields γt in the forward system. It is easy to verify that γt > 0 for all t.
We now characterize (β0, β1, β3). In the forward system, β3t = Πt/γt = [2 − γpub

T (T−t)
2σ2

Y
]−1

and β1t = 1 − β3t. Finally, using r = 0, the β0-ODE reduces to β̇0t = kβ3tγt/σ
2
Y . Writing

β0t = k−
´ T
t
β̇0s ds, using the expressions above for β3 and γ, and carrying out the integration

yields the stated solution for β0.

Lemma S.3 (Closed-form solution: σX = +∞ case, r = 0). For r = 0, the coordination
game has a unique LME for the σX = +∞ case:

β1t =
γo[(γo + γT )

2σ2
Y − (T − t)(γo)2γT ]

(γo + γT )[2σ2
Y (γ

o + γT )2 − (T − t)(γo)2γT ]
, β3t =

σ2
Y (γ

o + γT )
2

2σ2
Y (γ

o + γT )2 − (T − t)(γo)2γT

β0t = k [1− ln (γt/γT )] , α3t =
γo

γo + γT
, γt =

γTσ
2
Y (γo + γT )

2

σ2
Y (γo + γT )

2 − (T − t) (γo)2 γT
,

for all t ∈ [0, T ], where χt = 1 − γt/γ
o and γT ∈ (0, γo) is the unique solution in (0, γo) to

the cubic q(γ) := γT (γo)3 + (γ − γo) (γ + γo)2 σ2
Y = 0, and β2 ≡ 1− β1 − β3.

Proof. We work with the backward system, where the α3-ODE is α̇3t = rα3t[1−α3t(2−χt)].
With r = 0, α3 must be constant and equal to its initial value α3,0 = 1

2−χ0
. Next, recall

that by Lemma B.1, χt = 1 − γt
γo

, so χ0 = 1 − γF,NX

γo
and thus α3t = α3 = γo

γF,NX+γo
for all

t ∈ [0, T ]. (The variable γF,NX now plays the role of γF,Pub in the public case.) Note that the
ODE γ̇t =

α2
3γ

2
t

σ2
Y

given an initial value γF,NX has solution γt =
γF,NXσ2

Y

σ2
Y −γF,NX

(
γo

γF,NX+γo

)2
t
; switching

back to the forward system by replacing t with T − t yields the expression in the original
statement. The terminal condition γT = γo is equivalent to a cubic equation for γF,NX:

q(γF,NX) := γF,NXT (γo)3 +
(
γF,NX − γo

) (
γF,NX + γo

)2
σ2
Y = 0. (S.14)

Note q
(
γF,NX

)
> 0 for γF,NX ≥ γo and q

(
γF,NX

)
≤ 0 for γF,NX ≤ 0, so all real roots must lie

in (0, γo). Now any root to the cubic must satisfy

T (γo)3

γo − γF,NX = σ2
Y

(γF,NX + γo)2

γF,NX . (S.15)

The LHS of (S.15) is strictly increasing for γF,NX ∈ (0, γo) while the RHS is strictly decreasing
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in this interval, so q has a unique real root. Returning to the β1 ODE, using α3 = β1χ+β3, we
have β̇1 = −α3γtβ1t

σ2
Y

(α3−β1t) in the backward system. This ODE can be solved by integration
after moving β1(α3 − β1) to the LHS, and with algebra, one obtains (in the forward system)
the expression in the proposition. One then obtains β3t from these using β3t = α3 − β1tχt.
Finally, one calculates β0 as β0t = k −

´ T
t
β̇0s ds as in the public case, and the identity

β2 ≡ 1− β1 − β3 was already established in the existence part of the proposition.

Equipped with the previous two lemmata, we now prove the claim βpub
3,0 > αNX

3,0 . Using
the associated expressions from Lemmata S.2 and S.3, this is equivalent to

1

2− γpub
T T

2σ2
Y

>
γo

γo + γNX
T

⇐⇒ γ̂ := γo

(
1− γpub

T T

2σ2
Y

)
< γNX

T .

Recalling the cubic equation that implicitly defines γNX
T in the proof of Lemma S.3, where

q crosses 0 from below, it suffices to show that q(γ̂) = T γ̂(γo)3 + (γ̂ − γo)(γ̂ + γo)2σ2
Y < 0.

Using the expression for γpub
T from Lemma S.2, one can show that

q(γ̂) = −T (γ
o)4

2σ4
Y

[
(Tγo)2 + 2σ4

Y − Tγo
√
(Tγo)2 + 4σ4

Y

]
.

The expression in square brackets can be written as x+y
2

−√
xy > 0 where x = (Tγo)2 > 0

and y = (Tγo)2 + 4σ4
Y > 0, and thus q(γ̂) < 0, concluding the proof that βpub

3,0 > αNX
3,0 .

S.1.5 Proof of Proposition 3 part (ii)

We now turn to the comparison of β0 coefficients for the σX = 0 and σX = +∞ cases. Let
superscript pub and NX denote the σX = 0 and σX = +∞ cases, respectively. We make
use of the following lemma, which says that more information is transmitted to the receiver
when σX = +∞ than when σX = 0.

Lemma S.4. Fix r = 0 and γo, σY > 0. Then for all T , γpub
T > γNX

T .

Proof. Recall that γNX
T is the unique positive root of the cubic equation q(γ) = 0 defined in

Lemma S.3. At γNX
T , it is easy to deduce that q must cross 0 from below, and hence to prove

the claim, it suffices to show that q(γpub
T ) > 0. By direct calculation,

q(γpub
T ) = +

σ2
Y

T 3

(
2σ2

Y −
√

(Tγo)2 + 4σ4
Y

)(
2Tγo + 2σ2

Y −
√
(Tγo)2 + 4σ4

Y

)2

+ (γo)3
(
Tγo + 2σ2

Y −
√
(Tγo)2 + 4σ4

Y

)
= (γo)4Tq2(S), where
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q2(S) := 1 + 2S −
√
1 + 4S2 + S

(
2S −

√
1 + 4S2

)(
2 + 2S −

√
1 + 4S2

)2
and S :=

σ2
Y

Tγo
.

We now show that q2(S) > 0 for all S > 0 (observe that q2(0) = 0). Let R(S) = 1 + 2S −√
1 + 4S2; it is straightforward to verify that R(0) = 0 and that for all S ≥ 0, R′(S) > 0

and R(S) < 1. Moreover, the inverse of R is the function S : [0, 1) → [0,∞) characterized
by S(R) := R(2−R)

4(1−R)
. Hence, by change of variables, q2(S) > 0 for all S > 0 iff q3(R) > 0,

where q3(R) := R − S(R)(1 − R)(R + 1)2. Now for R ∈ [0, 1), q3(R) > 0 if and only if
S(R) = R(2−R)

4(1−R)
< R

(1−R)(R+1)2
, if and only q4(R) := (2−R)(R+ 1)2 < 4. It is straightforward

to verify that over the interval [0, 1], q4(R) attains its maximum value of 4 at R = 1, and
tracing our steps backwards this implies that q(γpub

T ) > 0.

Recall from Lemmata S.2 and S.3 the closed-form expressions

βpub
0t = k

[
1− ln

(
2σ2

Y

2σ2
Y − γpub

T (T − t)

)]
(S.16)

βNX
0t = k

[
1− ln

(
γNX
t /γNX

T

)]
, (S.17)

where

γpub
T =

γoT + 2σ2
Y −

√
(γoT )2 + 4σ4

Y

T
(S.18)

γNX
t =

γNX
T σ2

Y

(
γo + γNX

T

)2
σ2
Y (γo + γNX

T )
2 − (T − t) (γo)2 γNX

T

, (S.19)

and where γNX
T ∈ (0, γo) is the unique root in (0, γo) to the cubic q(γ) := γT (γo)3 +

(γ − γo) (γ + γo)2 σ2
Y = 0 (which crosses 0 from below at γ = γNX

T , as stated in the proof of
Lemma S.4).

Comparing (S.16) and (S.17), it suffices to show that for all t < T ,

2σ2
Y

2σ2
Y − γpub

T (T − t)
>
γNX
t

γNX
T

=
σ2
Y

(
γo + γNX

T

)2
σ2
Y (γo + γNX

T )
2 − (T − t) (γo)2 γNX

T

⇐⇒ σ2
Y

σ2
Y − 1

2
γpub
T (T − t)

>
σ2
Y

σ2
Y −

(
γo

γo+γNX
T

)2
γNX
T (T − t)

.

In turn, it suffices to show that

1

2
γpub
T >

(
γo

γo + γNX
T

)2

γNX
T ,
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which can be written as

ρpub

2
>

ρNX

(1 + ρNX)2
, (S.20)

where ρpub := γpub
T /γo ∈ (0, 1) and ρNX := γNX

T /γo ∈ (0, 1). Note that ρpub > ρNX by Lemma
S.4. Moreover, dividing through the cubic q(γ) by (γo)3σ2

Y , defining T̃ = Tγo

σ2
Y

, and changing
variables, ρNX is the unique value of ρ ∈ (0, 1) solving the cubic

q(T̃ , ρ) := T̃ ρ− (1− ρ)(1 + ρ)2 = 0,

where we make the dependence on T̃ explicit. Again, q(T̃ , ·) crosses 0 from below at ρ = ρNX.

Observe that ρ 7→ ρ
(1+ρ)2

is strictly increasing on (0, 1). Define ρ∗ :=
√
2− 1 ∈ (0, 1) and

observe also that

• If ρ ∈ [ρ∗, 1), then ρ
2
≥ ρ

(1+ρ)2
.

• If ρ ∈ (0, ρ∗), then ρ
2
< ρ

(1+ρ)2
.

We prove (S.20) via two cases: (i) ρpub ∈ [ρ∗, 1) and (ii) ρpub ∈ (0, ρ∗).
Case (i): We have

ρpub

2
≥ ρpub

(1 + ρpub)2
>

ρNX

(1 + ρNX)2
,

where the first inequality follows from ρpub ≥ ρ∗ and the second from the fact that 0 <

ρNX < ρpub < 1, so we are done.
Case (ii): We have

0 <
ρpub

2
<

ρpub

(1 + ρpub)2
,

and thus there is a unique value f(ρpub) =
1−ρpub−

√
1−2ρpub

ρpub in the interval (0, ρpub) such that

ρpub

2
=

f(ρpub)

(1 + f(ρpub))2
.

We now show that ρNX < f(ρpub), which implies ρpub

2
= f(ρpub)

(1+f(ρpub))2
> ρNX

(1+ρNX)2
, concluding

the proof. Since q(T̃ , ·) crosses 0 from below at ρNX, it suffices to show that

0 < q(T̃ , f(ρpub)). (S.21)
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for all T̃ > 0 that induce ρpub ∈ (0, ρ∗). Note that dividing (S.18) through by γo and

simplifying the right hand side yields ρpub = ρpub(T̃ ) = T̃+2−
√
T̃ 2+4

T̃
, which has inverse

T̃ (ρpub) = 4(1−ρpub)
(2−ρpub)ρpub , so we can establish (S.21) by equivalently showing that for all ρ ∈

(0, ρ∗),

0 < q(T̃ (ρ), f(ρ))

=
2

(2− ρ)ρ3

[
5ρ2 − 10ρ+ 4− (ρ2 − 6ρ+ 4)

√
1− 2ρ

]
.

The outside factor is clearly positive, and by a change of variables x =
√
1− 2ρ, so that

ρ = 1−x2
2

, the expression in square brackets simplifies to

g(x) =
1

4
(1− x)5.

Note that each ρ ∈ (0, ρ∗) is the image of some x =
√
1− 2ρ in (ρ∗, 1), and over the latter

domain, g(x) > 0, completing the proof.

S.1.6 Commitment Solution to Static Benchmark

Recall the static monetary policy game discussed in Section 2.

Proposition S.2. The commitment solution to the static game is ac(θ) = θ+µ
2
.

Proof. Let p denote the density of N(µ, γo) (the distribution of θ), and let R(â, a, θ) =

−(k+ â−a)2− (a− θ)2 denote the sender’s ex post payoff function. The sender’s problem is

sup
a(·),â

ˆ
R(â, a(θ), θ)p(θ) dθ (S.22)

subject to the receiver playing a best response: â = E[a(θ)] =
´
a(θ)p(θ) dθ.

The Lagrangian for the sender’s problem is

L(a(·), â, λ) =
ˆ
R(â, a(θ), θ)p(θ) dθ + λ

[
â−
ˆ
a(θ)p(θ) dθ

]
. (S.23)

For each θ, the first order condition with respect to a(θ) is Ra(θ)p(θ)− λp(θ) = 0,

=⇒ λ = Ra(θ) = −4a(θ) + 2k + 2â+ 2θ. (S.24)
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And the first order condition with respect to â is
´
Râp(θ) dθ + λ = 0,

=⇒ λ =

ˆ
2(â+ k − a(θ))p(θ)dθ = 2(â+ k)− 2

ˆ
a(θ)p(θ)dθ. (S.25)

Using the constraint, this implies

λ = 2(â+ k)− 2â = 2k. (S.26)

Moreover, integrating (S.24) over all θ (with density p) and using the constraint yields

λ = −2â+ 2k + 2µ, (S.27)

and thus â = µ. Finally, plugging λ = 2k and â = µ into (S.24) gives the solution ac(θ) = θ+µ
2

.

S.2 Reputation Game (Section 4.2): Omitted Proofs

Throughout this section, we again use NX to refer to the case σX = +∞ where the X signal
is pure noise, and we use pub to refer to the σX = 0 case.

S.2.1 Proof of Proposition 5

To sign coefficients, we work with ODEs in backward form. Consider any LME. To see that
β0 ≡ 0, just note that the terminal conditions imply β1,0 = v1,0 = v3,0 = 0, and moreover,
(β0, v1, v3) = (0, 0, 0) satisfy the system of ODEs for these three variables. These are the
unique solutions by the Picard-Lindelöf theorem.

Next, note that (γ0, χ0) ∈ (0, γo)×(0, 1). As in the proof of Theorem 1, define (β̃2, ṽ6, ṽ8) :=
(β2/(1 − χ), v6γ/(1 − χ)2, v8γ/(1 − χ)); also, define β̃3 := β3 − 1. Using the initial values
β1,0 = − ψγ0

σ2
Y +ψγ0χ0

< 0, and β̃2,0 = β̃3,0 = ṽ60 = ṽ80 = 0, it is tedious but straightforward to

verify that ˙̃β2,0 < 0, ˙̃β3,0 < 0, ˙̃v60 = 0 > ¨̃v60, and ˙̃v80 = 0 > ¨̃v80. (See spm.nb on our web-
sites.) Hence, for all sufficiently small t > 0, for all x ∈ {β1, β̃2, β̃3, ṽ6, ṽ8}, we have xt < 0.
Define τ := inf{t ∈ (0, T ] : xt = 0 for some x ∈ {β1, β̃2, β̃3, ṽ6, ṽ8}} (and τ = ∞ if this set is
empty). Suppose by way of contradiction that τ ≤ T . By continuity, xτ = 0 for some x. We
derive a contradiction by arguing via the comparison theorem that for all t ∈ (0, τ ] and all
x ∈ {β1, β̃2, β̃3, ṽ6, ṽ8}, xt < 0. Write each ODE in the form ẋt = fx(xt, t), and define y ≡ 0.
Consider any s ∈ (0, τ); by the definition of τ , each variable is strictly negative over (0, s],
so in particular, for each x, we have xs < ys = 0. And by definition, ẋt − fx(xt, t) = 0 over
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[0, T ]. Moreover, for t ∈ [s, τ ],

ẏt − fβ1(yt, t) = −2β̃2γtχt
σ2
X

≥ 0

ẏt − f β̃2(yt, t) =
α3tγt(σ

2
Xβ

2
1t − 2ṽ6tχt)

σ2
Xσ

2
Y

≥ 0

ẏt − f β̃3(yt, t) = −γt(1 + β1tχt)[σ
2
Xβ1t + ṽ8tχt]

σ2
Xσ

2
Y

≥ 0

ẏt − f ṽ6(yt, t) =
1

2
β̃2tγt(2β1t + β̃2t) ≥ 0

ẏt − f ṽ8(yt, t) = −γt[β̃2t − β1tβ̃3t] ≥ 0,

where we have used that α3 > 0 (since α3,0 =
σ2
Y

σ2
Y +ψγ0χ0

> 0 and α3 does not change sign,

as shown in the proof of Theorem 1), that for all x ∈ {β1, β̃2, β̃3, ṽ6, ṽ8} and all t ∈ [0, τ ],
xt ≤ 0, and in the third line, that 1 + β1tχt ≥ β3t + β1tχt = α3t > 0. By the comparison
theorem, we have xt < yt = 0 for all t ∈ [s, τ ] and all x ∈ {β1, β̃2, β̃3, ṽ6, ṽ8}, contradicting
that xτ = 0 for some such x. Hence, τ = ∞, and we conclude that for all t > 0 going
backward (t < T going forward), β1t < 0, β2t = β̃2t(1− χt) < 0, and β3t = β̃3t + 1 < 1, from
which it follows that β3t = α3t − β1tχt ≥ α3t > 0. Moreover, α3t = β3t + β1tχt ≤ β3t < 1

for t ∈ [0, T ). The remaining inequalities at time T (going forward) are immediate from the
terminal conditions.

S.2.2 Proof of Proposition 6

Assume throughout that r = 0 and ψ < σ2
Y /γ

o. We first characterize the unique equilibria
for the cases σX = 0 and σX = +∞, and then we compare the sender’s payoffs.

Public Case σX = 0

We look for an equilibrium of the form at = β0t + β1tMt + β3tθ, where Mt = M̂t is publicly
known, with value function V (θ,m, t) = v0t + v1tθ + v2tm+ v3tθ

2 + v4tm
2 + v5tθm.

The core (backward) system of ODEs is

(β̇0t, β̇1t, β̇3t, γ̇t) = (0,−β1tβ2
3tγ

2
t /σ

2
Y , β1tβ

2
3tγ

2
t /σ

2
Y , β

2
3tγ

2
t /σ

2
Y ).

with initial conditions β0,0 = 0, β1,0 = −ψγ0
σ2
Y

≤ 0, β3,0 = 1 and γ0 = γF ∈ (0, γo).

Define ψ̃ := ψγo/σ2
Y < 1 and T̃ := Tγo/σ2

Y .
We now show that there is a unique γF ∈ (0, γo) such that a (unique) solution to the IVP
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exists and satisfies γT = γo, and thus there exists a unique LME. Specifically, γF = ρpubγo,
where ρpub is the unique root of the cubic gpub(ρ) := −T̃ ψ̃ρ2(1− ρ) + ρ(1 + T̃ )− 1 = 0; and
(β0t, β1t, β3t) = (0, β1,0γ

F/γt, 1 + β1,0(1− γF/γt)) where γt =
γF [σ4

Y +tψ(γF )2]

σ4
Y −tγF (−γFψ+σ2

Y )
. (It is easy to

verify that gpub(0) < 0 < gpub(1), and moreover, ψ̃ < 1 implies gpub′(ρ) > 0 for all ρ ∈ R, so
there is indeed a unique root of the cubic.)

Note that that β0 = 0 is the unique solution to its ODE and initial condition. Now
β̇1t + β̇3t = 0, so β1 + β3 is constant, and

β1t + β3t = β10 + β30 = 1 + β10 =⇒ β1t = 1 + β10 − β3t.

Next, define Π := β1γ and observe that Π̇ ≡ 0, so

β1tγt = β10γ
F

=⇒ β1t = β10γ
F/γt (S.28)

=⇒ β3t = 1 + β10(1− γF/γt), (S.29)

where γt ≥ γF > 0 for all t over the interval of existence, since γ is nondecreasing.
Using (S.29), the ODE for γ is γ̇t = [(1 + β10)γt − β10γ

F ]2/σ2
Y . Integrating and using the

initial condition for β10 and γ0 = γF yields

γt =
γF [σ4

Y + tψ(γF )2]

σ4
Y − tγF (−γFψ + σ2

Y )
,

wherever this exists. The condition γT = γo, after writing γF = ργo, is equivalent to the
cubic equation gpub(ρ) = 0 stated above, completing the characterization of LME.

σX = +∞ Case

We look for an equilibrium with at = β0tµ + β1tMt + β3tθ, where Mt = Et[M̂t], with value
function V (t, θ,m) = v0t + v1tθ + v2tm+ v3tθ

2 + v4tm
2 + v5tθml. The backward system is

β̇0 = −β
2
1γ(1− χ)α3

σ2
Y

β̇1 = −β1γ(α3 − β1)α3

σ2
Y

β̇3 =
β3β1γα3

σ2
Y

γ̇t =
γ2α2

3

σ2
Y
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where χ = χ(γ) = 1− γ/γo, and with initial conditions

β00 = 0, β10 = − ψγF

σ2
Y + ψγFχ(γF )

< 0, β30 = 1, and γ0 = γF ∈ (0, γo).

Also note that α̇3t = 0, so α3 = α3,0 = ᾱ :=
σ2
Y

σ2
Y +ψγ0χ(γ0)

, and thus it suffices to solve the
γ-ODE with terminal condition γT = γo to pin down γF . (The remaining value function
coefficients are easily recovered as in the previous application.)

We show that there is one solution for each root ρNX ∈ (0, 1) of the quintic gNX(ρ) :=

T̃ ρ − (1 − ρ)[1 + ψ̃ρ(1 − ρ)]2, where T̃ := Tγo/σ2
Y and ψ̃ := ψγo/σ2

Y . Such a root always
exists since gNX(0) < 0 < gNX(1), and hence an LME exists. In any LME, γt =

γF σ2
Y

σ2
Y −γFα2

3t
,

where γF = ρNXγo, and with α3 = α3,0 being a constant as above. We then show that there
is a unique root in (0, 1) when ψ̃ < 1.

To establish these claims, consider the backward IVP indexed by γF over its maximal
interval of existence. Notice first that β̇0 + β̇1 + β̇3 ≡ 0, and so

β0t + β1t + β3t = β00 + β10 + β30 = 1− ψγF

σ2
Y + ψγFχ(γF )

.

Thus, as long as β1 and β3 exist, β0 will too, and since β0 does not appear in any of the
other ODEs, we can ignore it from the analysis.

Now consider the subsystem

β̇1 = −β1ᾱγ(ᾱ− β1)

σ2
Y

β̇3 =
β3β1γᾱ

σ2
Y

,

and observe that since β10 < 0 and β30 = 1 > 0, the same inequalities hold in a neighborhood
of zero.

We claim that β3 and β1 do not change signs. First, both cannot vanish at the same
time, as this would violate that α3t = ᾱ > 0. Now suppose β3 is the first to do it, say at
time t; then for all s ∈ [0, t], β10 < 0 and by the comparison theorem, β3 > 0 for all s ∈ [0, t],
a contradiction. Likewise, a contradiction obtains if β1 vanishes first. We therefore conclude
that β1 is increasing while β3 is decreasing, and that they lie in [β10, 0] and [0, 1] as long as
they exist.

The existence of a solution to the IVP over [0, T ] then reduces to the existence of a
solution to the γ-ODE when this ODE is driven by ᾱ. As long as it exists, straightforward
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integration shows that

γt =
γFσ2

Y

σ2
Y − γF ᾱ2t

.

Imposing γT = γo and using that ᾱ = σ2
Y /[σ

2
Y + ψγF (1− γF/γo)] = 1/[1 + ψ̃ρ(1− ρ)] yields

the quintic equation gNF(ρ) = 0 introduced earlier. (Note that when γT = γo, γt is well
defined for all t ∈ [0, T ].)

To show uniqueness for ψ̃ < 1, we prove that the derivative of gNF is positive at any point
in (0, 1) that satisfies gNF(ρ) = 0; thus, gNF can only cross zero once, and hence, it does so
from below. It is easy to verify that

(gNF)′(ρ) = T̃ + [1 + ψ̃ρ(1− ρ)]2 − 2ψ̃(1− ρ)(1− 2ρ)[1 + ψ̃ρ(1− ρ)].

At a crossing point, however, T̃ + [1 + ψ̃ρ(1− ρ)]2 = [1+ψ̃ρ(1−ρ)]2
ρ

, and so

(gNF)′(ρ) =
1

ρ
[1 + ψ̃ρ(1− ρ)]

{
1 + ψ̃ρ(1− ρ)− 2ψ̃ρ(1− ρ)(1− 2ρ)

}
≥ 1

ρ
[1 + ψ̃ρ(1− ρ)]

{
1 + 0− 2ψ̃

1

4

}
> 0,

where we have used that 0 < ψ̃ < 1, 0 < ρ(1− ρ) ≤ 1/4, and |1− 2ρ| ≤ 1.

Payoff Comparisons

The following lemma will be useful for comparing the sender’s payoffs.

Lemma S.5. If ψ̃ ∈ (0, 1), then there is more learning in the public case for all T > 0.

Proof. Let ρx = γxT/γ
o ∈ (0, 1), where γxT is the terminal value of γ in the BVP of case

x ∈ {pub,NX}. When ψ̃ ∈ (0, 1), these values are the unique roots of

0 = gNX(ρ) := ρT̃ − (1− ρ)[1 + ψ̃ρ(1− ρ)]2 = ρ(1 + T̃ )− 1− ψ̃ρ(1− ρ)2[2 + ψ̃ρ(1− ρ)]

0 = gpub(ρ) := ρ(1 + T̃ )− 1− ψ̃T̃ ρ2(1− ρ),

respectively. In particular, observe that ρx > 1/(1+ T̃ ), x ∈ {pub,NX}. Our goal is to show
ρpub < ρNX.

Now, using that ρpub(1 + T̃ )− 1 = ψ̃T̃ (ρpub)2(1− ρpub), we get that

gNX(ρpub) =
ψ̃(1− ρpub)

T̃

{
T̃ 2(ρpub)2 − (1− ρpub)[2ρpubT̃ + ρpub(1 + T̃ )− 1]

}
.
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where ψ̃(1−ρpub)

T̃
> 0. Thus, letting

Q(ρ) := T̃ 2ρ2 − (1− ρ)[2ρT̃ + ρ(1 + T̃ )− 1] = ρ2(T̃ 2 + 3T̃ + 1)− ρ(3T̃ + 2) + 1,

it suffices to show that Q(ρpub) < 0, as gNX(ρ) < 0 if and only if ρ < ρNX.
Observe that the roots of Q are given by ρ− := (3−

√
5)T̃+2

2(T̃ 2+3T̃+1)
and ρ+ := (3+

√
5)T̃+2

2(T̃ 2+3T̃+1)
, and

that ρ− < 1
1+T̃

< ρ+. Consequently, it suffices to show that gpub(ρ+) > 0: this ensures that
ρpub < ρ+, and since ρpub > 1

1+T̃
> ρ−, this implies that Q(ρpub) < 0.

Straightforward algebraic manipulation yields that gpub(ρ+) > 0 if and only if

g̃(T̃ , ψ̃) := 4(1 + T̃ )[(3 +
√
5)T̃ + 2][T̃ 2 + 3T̃ + 1]2 − 8[T̃ 2 + 3T̃ + 1]3

−ψ̃T̃ 2[(3 +
√
5)T̃ + 2]2[2T̃ + (3−

√
5)] > 0.

A lower bound on the left hand side is found by setting ψ = 1, and g̃(T̃ , 1) can be written

as T̃
5∑
i=0

aiT̃
i where all the ai > 0. Hence, g̃(T̃ , ψ̃) > 0 whenever T̃ > 0 and ψ̃ ∈ (0, 1],

concluding the proof.

We now leverage Lemma S.5 to compare ex ante payoffs. To simplify expressions, we
again rescale payoffs to remove the outside scalar factor of 1

2
. Let V x denote the ex ante

payoff to the politician in the case x ∈ {pub,NX}. First,

V pub = E0

[
−
ˆ T

0

(at − θ)2dt− ψM2
T

]
= −
ˆ T

0

E0

[
(β1tMt + [β3t − 1]θ)2

]
dt− ψ(µ2 + γo − γT )

= −
ˆ T

0

[
(β3t − 1)2γo + β2

1t(γ
o − γt) + 2β1t(β3t − 1)(γo − γt)

]
dt− ψ̃σ2

Y (1− ρpub).

Using the solutions for the coefficients and γt in terms of γF and carrying out the simplifi-
cations, we obtain V pub = V pub(ρpub), where

V pub(ρ) := σ2
Y

{
−ψ̃(1− ρ) + T̃ ψ̃ρ2[−ψ̃(1− ρ) + 1] + ln

(
1− ρ

T̃ ρ

)}
.

In the σX = +∞ case, note that E0[M
2
t ] = E0[(χtθ + (1 − χt)µ)

2] = E0[χ
2
t θ

2] = χ2
tγ

o.
Hence, E0[M̂

2
t ] = E0[(M̂t −Mt)

2] + E0[M
2
t ] = γ2t + χ2

tγ
o = χtγt + χ2

tγ
o.
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Using at = β0t + β1tMt + β3tθ = āθ, we now calculate

V NX = E0

[
−
ˆ T

0

(at − θ)2dt− ψ(χTγT + χ2
Tγ

o)

]
= −(1− α3)

2γoT − ψχT (γT + χTγ
o).

Expressing χT = 1 − γT/γ
o, γT and α3 in terms of γF = γT , we have V NX = V NX(ρNX),

where
V NX(ρ) := σ2

Y

{
−ψ̃2ρ(1− ρ)3 − ψ̃(1− ρ)

}
.

We now prove that for r = 0 and ψ̃ ∈ (0, 1), the sender’s ex ante payoff is higher for
σX = +∞ than for σX = 0. To do so, we show that (i) V pub(ρpub) < V NX(ρpub) and
(ii) V NX(ρ) is increasing for ρ ≥ ρpub. Since ρpub < ρNX by Lemma S.5, it follows that
V pub(ρpub) < V NX(ρNX).

Toward establishing (i), define Ṽ (ρ) := V pub(ρ)− V NX(ρ); we have

Ṽ (ρ) = σ2
Y

{
T̃ ψ̃ρ2[−ψ̃(1− ρ) + 1] + ln

(
1− ρ

T̃ ρ

)
+ ψ̃2ρ(1− ρ)3

}
,

and our first goal is to show Ṽ (ρpub) < 0. Since ln(x) < x− 1 for x > 0, we have

Ṽ (ρ) < σ2
Y

{
T̃ ψ̃ρ2[−ψ̃(1− ρ) + 1] +

[
1− ρ

T̃ ρ
− 1

]
+ ψ̃2ρ(1− ρ)3

}
=
σ2
Y

T̃ ρ
Ṽ2(ρ),

where Ṽ2(ρ) := T̃ 2ψ̃ρ3[1 − ψ̃(1 − ρ)] + 1 − ρ(1 + T̃ ) + T̃ ψ̃2ρ2(1 − ρ)3, and so it suffices to
show Ṽ2(ρ

pub) < 0. Now the equation gpub(ρpub) = 0 is equivalent to ψ̃ = −1−(1+T̃ )ρ

T̃ ρ2(1−ρ) |ρ=ρpub ;

using this to eliminate ψ̃ and simplifying, we obtain Ṽ2(ρ
pub) = − [ρ(1+T̃ )−1]3

T̃ ρ2
|ρ=ρpub , which is

strictly negative as ρpub > 1
1+T̃

, establishing claim (i).
Toward claim (ii), differentiate

d

dρ
V NX(ρ) = σ2

Y

{
−ψ̃2[−3ρ(1− ρ)2 + (1− ρ)3] + ψ̃

}
= σ2

Y ψ̃
{
−ψ̃(1− ρ)2(1− 4ρ) + 1

}
.

The expression in braces is positive iff h(ρ) := (1− ρ)2(1− 4ρ) < 1
ψ̃
. Now for ρ ∈ [0, 1], h(ρ)

attains its maximum value of 1 at ρ = 0. Hence, if ψ̃ ≤ 1, the expression is positive for all
ρ ∈ (0, 1) and we conclude that V NX(ρ) is increasing for all ρ ≥ ρpub.

Combining parts (i) and (ii) yields V pub(ρpub) < V NX(ρpub) < V NX(ρNX) as desired.
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S.3 Existence of Linear Markov Equilibria (Section 5):

Omitted Proofs

S.3.1 Auxiliary Results

In this section we prove Lemma C.3 from the main text.

Proof of Lemma C.3. Let (xit)t∈[0,T ] denote the solution to IVP(yi) from the statement of
Lemma C.3. For each component j ∈ {1, . . . , n}, the triangle inequality implies

|x1jt − x2jt| ≤ |ωj(y10)− ωj(y
2
0)|+

ˆ t

0

|Fj(x1s, y1s)− Fj(x
2
s, y

2
s)|ds.

The mean value theorem and the facts that Fj is of class C1 and X and Y are compact then
yield that there exists cj ∈ R+ such that for all y1, y2 ∈ Y ,

|x1jt − x2jt| ≤ |ωj(y10)− ωj(y
2
0)|+ cj

ˆ t

0

||y1s − y2s ||∞ds+ cj

ˆ t

0

||x1s − x2s||∞ds.

Letting c = max{cj : j = 1, ..., n}, we obtain

||x1t − x2t ||∞ ≤ ||ω(y10)− ω(y20)||∞ + c

ˆ t

0

||y1s − y2s ||∞ds+ c

ˆ t

0

||x1s − x2s||∞ds.

Since c ≥ 0 and t 7→ ||ω(y10) − ω(y20)||∞ + c
´ t
0
||y1s − y2s ||∞ds is non-decreasing, Gronwall’s

inequality (Teschl, 2012, Lemma 2.7) implies that

||x1t − x2t || ≤ ect
(
||ω(y10)− ω(y20)||∞ + c

ˆ t

0

||y1s − y2s ||∞ds
)

≤ ecT

(
(||ω(y10)− ω(y20)||∞ + cT sup

t∈[0,T ]
||y1t − y2t ||∞

)
= k1||ω(y10)− ω(y20)||∞ + k2 sup

s∈[0,T ]
||y1s − y2s ||∞.

S.3.2 Terminal Conditions (ψ ̸= 0)

In this section, we provide a lemma characterizing terminal conditions, which we will use to
prove Corollary C.2 in the next section.
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Suppose the sender receives a terminal payoff of the form ψ(âT ) = ψ1âT + 1
2
ψ2â

2
T , where

ψ1, ψ2 are constants. (An intercept is strategically irrelevant.) The following result gives
sufficient conditions for the terminal game parameterized by (γT , χT ) to have a unique equi-
librium, continuously differentiable in those parameters, and it provides expressions for the
terminal conditions for strategy coefficients (up to αT , which is defined implicitly). The
bound Cψ/γo on the curvature, characterized in the proof of the lemma, ensures uniqueness
by limiting strategic complementarities. Note that there are no restrictions on ψ1.

Lemma S.6. Under Assumptions 1 and 2, there exists Cψ ∈ (−∞, 0)∪{−∞} independent of
(r, γo) such that for all (ψ1, ψ2) ∈ R× (Cψ/γ

o, 0] there exists β⃗T (γT , χT ) continuously differ-
entiable over [0, γo]× [0, 1] that, together with the receiver’s myopic best reply, characterizes
the unique Bayes Nash equilibrium of the terminal game parameterized by (γT , χT ):

β0T =
σ2
Y [(ua0 + uaâûâ0) + (ψ1 + ûâ0ψ2)(ûâθ + ûaâα3T )α3TγT/σ

2
Y ]

σ2
Y (1− uaâûaâ)− ψ2γTα3T ûaâ(ûâθ + ûaâα3T )

(S.30)

β1T = (ûâθ + ûaâα3T )
(
uaâ + ψ2(ûâθ + ûaâα3T )α3TγT/σ

2
Y

)
(S.31)

β2T =
σ2
Y ûaâ(ûâθ + ûaâα3T )(1− χT ) (uaâ + ψ2α3TγT (ûâθ + ûaâα3T )/σ

2
Y )

2

σ2
Y (1− uaâûaâ)− ψ2γTα3T ûaâ(ûâθ + ûaâα3T )

(S.32)

β3T = uaθ. (S.33)

Moreover, α3T (γT , χT ) := β1T (γT , χT )χT + β3T (γT , χT ) has the same sign as uaθ, and
therefore the same sign as αm3 . The value of Cψ depends on the parameter values as follows:

• If ûaâûaθ = 0, then Cψ = −∞.

• If ûaâûaθ ̸= 0, then Cψ = −3σ2
Y min{1,1−uaâûaâ}

û2âθ
< 0.

Proof. We first derive the system of equations that characterize any Bayes Nash equilibrium
of the static game at time T . Given that (i) the receiver plays ât = δ0t + δ1tM̂t + δ2tLt,
where δ0t = û0 + ûaâβ0t, δ1t = ûâθ + ûaâ(β3t + β1tχt) and δ2t = ûaâ[β2t + β1t(1− χt)], and (ii)
Mt = Et[M̂t], all t ∈ [0, T ], imposing that the sender’s strategy at = β0t+β1tMt+β2tLt+β3tθ

satisfies the first-order condition on the right hand side of the HJB equation for times t ∈
[0, T ), we obtain the following equations:

γtα3tv2t = −σ2
Y [ua0 + uaâûâ0 − (1− uaâûaâ)β0t] (S.34)

γtα3tv5t = −σ
2
Y

2
[uaâûâθ + uaâûaâα3t − β1t] (S.35)

γtα3tv7t = −σ2
Y [uaθ − β3t] (S.36)

γtα3tv9t = −σ2
Y [uaâûaâβ1t(1− χt)− β2t(1− uaâûaâ)]. (S.37)
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By continuity (wrt time) of the strategy, learning, and value function coefficients, (S.34)-
(S.37) also hold at time t = T .

The sender’s time-T expectation of the terminal payoff is

ET [ψ(âT )] = ψ1[δ0T + δ1TMT + δ2TLT ] +
ψ2

2
[δ0T + δ1TMT + δ2TLT ]

2 +
ψ2

2
δ21TγTχT ,

from which we obtain

v2T = [ψ1 + ψ2(ûâ0 + ûaâβ0T )](ûâθ + ûaâα3T ) (S.38)

v5T =
ψ2

2
(ûâθ + ûaâα3T )

2 (S.39)

v7T = 0 (S.40)

v9T = ψ2ûaâ[β2T + β1T (1− χT )](ûâθ + ûaâα3T ). (S.41)

For later use in our boundary value problem, we also note the terminal conditions

v6T =
ψ2

2
δ22T =

ψ2

2
û2aâ[β2T + β1T (1− χT )]

2 (S.42)

v8T = 0. (S.43)

Evaluating (S.34)-(S.37) at time t = T and equating these with (γTα3T ) times (S.38)-
(S.41), respectively, we obtain

−σ2
Y [ua0 + uaâûâ0 − (1− uaâûaâ)β0T ] = γTα3T [ψ1 + ψ2(ûâ0 + ûaâβ0T )](ûâθ + ûaâα3T )

(S.44)

−σ
2
Y

2
[uaâûâθ + uaâûaâα3T − β1T ] =

ψ2

2
γTα3T (ûâθ + ûaâα3T )

2 (S.45)

−σ2
Y [uaθ − β3T ] = 0 (S.46)

−σ2
Y [uaâûaâβ1T (1− χT )− β2T (1− uaâûaâ)] = ψ2γTα3T ûaâ[β2T + β1T (1− χT )](ûâθ + ûaâα3T ).

(S.47)

First, we characterize α3T , and then we show that (β0T , β1T , β2T , β3T ) are given by (S.30)-
(S.33).

Multiplying (S.45) through by 2χT , substituting β1TχT = α3T − β3T = α3T − uaθ, and
rearranging, (S.45) becomes

σ2
Y [uaθ + uaâûâθχT − α3T (1− uaâûaâχT )] + ψ2γTχTα3T (ûâθ + ûaâα3T )

2︸ ︷︷ ︸
=:f(α3T ,γT ,χT )

= 0. (S.48)
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We construct Cψ such that if ψ ∈ (Cψ/γ
o, 0], there exists a unique real α3T continuous

in (γT , χT ) over [0, γo]× [0, 1] that solves (S.48) and has the same sign as uaθ; from this, we
construct β1 solving (S.45) and in turn, β0 and β2 solving (S.44) and (S.47), respectively, all
continuously differentiable in (γT , χT ).

If ψ2 = 0, f(·, γT , χT ) is linear and has unique root α3T (γT , χT ) :=
uaθ+uaâûâθχT

1−uaâûaâχT
, which is

well-defined and has the same sign as uaθ for all (γT , χT ) ∈ [0, γo]× [0, 1] by Assumption 2.
And clearly, it is continuous in (γT , χT ) over this domain.

Hence, for the remainder of the proof, assume ψ2 < 0. We consider two cases: ûaâ =

0 and ûaâ ̸= 0. If ûaâ = 0, f(·, γT , χT ) is linear and has unique root α3T (γT , χT ) :=
σ2
Y (uaθ+uaâûâθχT )

σ2
Y (1−uaâûaâχT )−ψ2γTχT û

2
âθ

=
σ2
Y (uaθ+uaâûâθχT )

σ2
Y −ψ2γTχT û

2
âθ

which is well-defined, has the same sign as uaθ,
and is continuous in (γT , χT ) over [0, γo] × [0, 1]. Specifically, the numerator of the expres-
sion defining α3T has the same sign as uaθ by Assumption 2, and ψ2 ≤ 0 ensures that the
denominator is positive. Thus, for ûaâ = 0, the lemma holds with Cψ = −∞, provided that
the remaining variables are uniquely determined and continuously differentiable; we perform
this step for both cases ûaâ = 0 and ûaâ ̸= 0 after solving for α3T for the latter.

Now consider ψ2 < 0 and ûaâ ̸= 0. If χT = 0, then for all γT ≥ 0, f(·, γT , χT ) is linear
with intercept σ2

Y uaθ and unique root α3T (γT , 0) := uaθ.
Next, suppose χT ∈ (0, 1], ψ2 < 0, and ûaâ ̸= 0. We establish a condition such that for

all (γT , χT ) ∈ [0, γo] × (0, 1], f(·, γT , χT ) is strictly decreasing, and thus it has exactly one
real root. Clearly this holds for γT = 0. If γT > 0, then f(·, γT , χT ) is cubic, and it satisfies
limα3T→+∞ f(α3T , γT , χT ) = −∞ and limα3T→−∞ f(α3T , γT , χT ) = +∞. We calculate

∂

∂α3T

f(α3T , γT , χT ) = −σ2
Y (1− uaâûaâχT ) + ψ2γTχT (ûâθ + ûaâα3T )(ûâθ + 3ûaâα3T ), (S.49)

which is concave and quadratic in α3T . The first term on the right hand side of (S.49) is
negative by Assumption 2. The maximum value of the right hand side of (S.49), attained at
α3T = − 2ûâθ

3ûaâ
, is −σ2

Y (1− uaâûaâχT )− 1
3
û2âθψ2γTχT . Thus

∂

∂α3

f(α3T , γT , χT ) ≤ −σ2
Y min{1, 1− uaâûaâ} −

1

3
û2âθψ2γ

o. (S.50)

Define Cψ = −∞ if ûâθ = 0 (or if ûaâ = 0 as noted earlier) and Cψ := −3σ2
Y min{1,1−uaâûaâ}

û2âθ
< 0

if ûaâûâθ ̸= 0. By construction, for all ψ ∈ (Cψ/γ
o, 0] and all (γT , χT ) ∈ [0, γo] × (0, 1],

f(·, γT , χT ) is strictly decreasing and has a unique real root which we denote α3T (γT , χT ).
Since f(0, γT , χT ) = σ2

Y [uaθ + uaâûâθχT ] has the same sign as uaθ by Assumption 2 and
f(·, γT , χT ) is decreasing, α3T (γT , χT ) has the same sign as uaθ.

Having characterized α3T (γT , χT ) ̸= 0 on [0, γo] × [0, 1] for (ψ1, ψ2) ∈ R × (Cψ/γ
o, 0)
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for both cases ûaâ = 0 and ûaâ ̸= 0, observe that (γT , χT ) 7→ α3T (γT , χT ) is continuously
differentiable by the implicit function theorem.

It is immediate from (S.46) that in any solution, β3T = uaθ; trivially, this is continuously
differentiable in (γT , χT ). Further, given α3T (γT , χT ) as above, (S.45) uniquely determines
β1T (γT , χT ) continuously differentiable. We now show there exist β0T and β2T solving (S.44)
and (S.47), respectively, also continuously differentiable in (γT , χT ). These equations are
linear (and uncoupled) in β0T and β2T , respectively. Rearranging terms in (S.47) yields

β2T [σ
2
Y (1− uaâûaâ)− ψ2γTα3T ûaâ(ûâθ + ûaâα3T )]︸ ︷︷ ︸

=:C̃(γT ,χT )

= ûaâβ1T (1− χT )[ψ2γTα3T (ûâθ + ûaâα3T ) + σ2
Y uaâ].

Since collecting β0T terms on the left side of (S.44) yields the same coefficient C̃(γT , χT ),
to establish existence it suffices to show that C̃(γT , χT ) > 0.

If α3T ûaâ(ûâθ + ûaâα3T ) ≥ 0, we are done, since by Assumption 2, σ2
Y (1 − uaâûaâ) > 0,

and by assumption, ψ2 ≤ 0 and γT ≥ 0. Suppose now that α3T ûaâ(ûâθ + ûaâα3T ) < 0.
Note that this implies ûaâ ̸= 0 and ûâθ ̸= 0, and by the definition of Cψ, ψ2 > Cψ/γ

o =

−3σ2
Y min{1,1−uaâûaâ}

û2âθγ
o . Thus, we have

C̃(γT , χT ) ≥ σ2
Y (1− uaâûaâ)−

[
−3σ2

Y min{1, 1− uaâûaâ}
û2âθγ

o

]
γTα3T ûaâ(ûâθ + ûaâα3T )

≥ σ2
Y min{1, 1− uaâûaâ}+

[
3σ2

Y

û2âθ
min{1, 1− uaâûaâ}

]
α3T ûaâ(ûâθ + ûaâα3T )

=
σ2
Y min{1, 1− uaâûaâ}

û2âθ

[
û2âθ + 3α3T ûaâ(ûâθ + ûaâα3T )

]
>
σ2
Y min{1, 1− uaâûaâ}

û2âθ

[
ûâθ +

3

2
α3T ûaâ

]2
≥ 0,

where the second line uses that γT ≤ γo and α3T ûaâ(ûâθ+ûaâα3T ) < 0, and the fourth line uses
that α3T ûaâ ̸= 0 which implies (α3T ûaâ)

2 > 0. Thus C̃(γT , χT ) > 0, so given α3T , (S.44) and
(S.47) have unique solutions β0T and β2T which by inspection are continuously differentiable
over the domain [0, γo]× [0, 1]. This concludes the proof of the lemma statement.

For later use in our existence theorem, we note the following facts about the solution
described above. First, β2T carries a factor of 1− χT and (therefore) v6T carries (1− χT )

2,
while v8T = 0. Hence, it is easy to perform a change of variables (β̃2T , ṽ6T , ṽ8T ) = (β2T/(1−
χT ), γTv6T/(1− χT )

2, γTv8T/(1− χT )) as in the main text, all continuously differentiable in
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(γT , χT ) and thus bounded over the compact domain [0, γo]× [0, 1]. Second, after this change
of variables, there exist nondecreasing functions η, v̄ : R+ → R+ with η(γo), v̄(γo) → 0 as
γo → 0 such that for all (γT , χT ) ∈ [0, γo]× [0, 1] and i ∈ {6, 8}, ||β⃗T (γT , χT )− β⃗m(χT )||∞ ≤
η(γo) and |ṽiT (γT , χT )| ≤ v̄(γo). To see this, observe that the right hand sides of (S.44)-
(S.47) converge uniformly to 0 as γT → 0, and thus β⃗T (γT , ·) converges uniformly to β⃗m(·)
as γT → 0. Similarly, it is easy to see that ṽ6T (γT , ·) → 0 uniformly as γT → 0, while
ṽ8T is identically zero. Setting η(γo) := sup{||β⃗T (γT , χT ) − β⃗m(χT )||∞ : (γT , χT ) ∈ [0, γo] ×
[0, 1]} and v̄(γo) := sup{|ṽ6T (γT , χT )| : (γT , χT ) ∈ [0, γo] × [0, 1]}, we have that η and v̄

are nondecreasing by construction, and they satisfy the inequalities and limit properties as
claimed.

S.3.3 Proof of Corollary C.2

We follow the same steps from before except for a few modifications, which we outline here.
First, we note that the terminal values (β1T , β̃2T , β3T , ṽ6T , ṽ8T ) and α3T = β1TχT + β3T ̸= 0

are now implicit C1 functions of (γT , χT ) over [0, γo]× [0, 1] given by Lemma S.6.2

In the ‘Centering’ step, we replace the initial conditions for the backward ODEs of
(β⃗c, ṽ6, ṽ8) with the difference (β1T , β̃2T , β3T , ṽ6T , ṽ8T ) − (βm1 , β̃

m
2 , β

m
3 , 0, 0) (suppressing de-

pendence on (γT , χT )), and observe that the ODEs themselves do not change. Likewise, in
the ‘Auxiliary variable’ step, we modify the initial condition for the (backward) α̃-ODE
to be α̃0 = α3T (γ, χ) ̸= 0 for all (γ, χ) ∈ [0, γo] × [0, 1]. Moreover, by the same comparison
argument as before, α̃ does not change sign; but since α3T and αm3 always have the same
sign from Lemma S.6, it follows again that α̃/αm3 > 0 from which we can find an interval of
existence independent of r ≥ 0. We also note that the argument showing that the solution
to the boundary value problem satisfies α3 = α̃ ̸= 0 also remains unchanged.

Step 1 of the proof of Theorem C.1 is only modified in that the parameter used in our
domain Λ(·) will be ρ+K + η(γo) instead of ρ+K, to account for nonzero initial conditions
for the centered variables. We elaborate on this parameter when discussing Step 3 below.

In Step 2 of the proof of Theorem C.1, we write for i ∈ {1, 2, 3} and j ∈ {4, 5}

|bit − bi0| =
∣∣∣∣ˆ t

0

e
−r
´ t
s

α̃u
αm
3u
du
γ̂shi(bs − b0 + b0, χ̂s)ds

∣∣∣∣
|bjt − bj0| =

∣∣∣∣ˆ t

0

e−
´ t
s (r+γ̂uRj(bu,χ̂u))duγ̂shj(bs − b0 + b0, χ̂s)ds

∣∣∣∣ .
Now from the end of the proof of Lemma S.6, there exist nondecreasing functions η(γo)
2Note that ṽ8T = 0 as before, but ṽ6T can be nonzero.
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and v̄(γo) with η(γo), v̄(γo) → 0 as γo → 0 such that for all i ∈ {1, 2, 3}, |bi0| ≤ η(γo)

and for j ∈ {4, 5}, |bj0| ≤ v̄(γo). Hence, when the bound |bis − bi0| ≤ K holds for
all i ∈ {1, . . . , 5}, we can bound |hi(bs − b0 + b0, χs)| ≤ hi(K + η(γo), K + v̄(γo)) for
scalars hi(K+η(γo), K+ v̄(γo)) which are increasing in both arguments. Define T (γo;K) :=

mini∈{1,...,5}
K

γohi(K+η(γo),K+v̄(γo))
. By repeating the arguments used in the proof of Lemma C.2,

for all T < T (γo;K), a solution to the modified version of (IVPbwd(λ̂)) exists and satisfies
|bit − bi0| ≤ K for all t ∈ [0, T ].

In Step 3, q is defined the same way as before, except now ω as in Lemma C.3 is the vector
of new initial values for (β⃗c, ṽ6, ṽ8). Since ω is continuous, q remains continuous. Moreover,

q(λ) = q(λ)− (ω1(λT ), ω3(λT )) + (ω1(λT ), ω3(λT ))

= (b̂1(·;λ), b̂3(·;λ))− (ω1(λT ), ω3(λT ))︸ ︷︷ ︸
||·||∞≤K

+(B1(λ(·)),B3(λ(·)))︸ ︷︷ ︸
||·||∞≤ρ

+(ω1(λT ), ω3(λT ))︸ ︷︷ ︸
||·||∞≤η(γo)

,

and thus the triangle inequality yields ||q(λ)||∞ ≤ K + ρ+ η(γo).
Step 4 goes through almost unchanged, except that (IVPfwd(q(λ))) now takes as its input

q(λ), bounded by K + ρ+ η(γo) as above. Applying this bound to |λ̇1t| and |λ̇2t|, it follows
that the solution λ to (IVPfwd(q(λ))) lies in Λ(K + ρ+ η(γo)). By the same arguments as in
the original Step 4, q 7→ λ(q) is continuous, and the function g defined by g(λ) = λ(q(λ)) is
a continuous self-map on Λ(K + ρ + η(γo)). Schauder’s Fixed Point Theorem then applies
exactly as in Step 5. To conclude, we again define T (γo) by maximizing T (γo;K) over K > 0,
and we note that T (γo) ∈ Ω(1/γo), and it can be written in the form CT/γ

o.

S.3.4 Proof of Proposition 1: (β0, v3) System

When uaâ = ûaâ = ψaâ = 0, using that β1 = β2 = v6 = v8 = 0, the ODEs for β0 and v3 are

β̇0t = r
α3t

uaθ
(β0t − ua0)−

v3tα3t(ûâθ + ûaâα3t)
2γ2t χt

σ2
Xσ

2
Y (1− χt)

− α3tγt(ûâθ + ûaâα3t)(uâθ(β0t − ua0) + uâ0uaθ)

uaθσ2
Y

v̇3t = rv3t +
v3tγtχt(ûâθ + ûaâα3t)

2

1− χt
.

The terminal condition for v3 is v3T = 0, so v3 = 0 is the unique solution. It is easy to see
that after setting v3t = 0 in the ODE for β0t, there is no dependence on σX and χ.
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S.4 Extension: Both Players Affect X and Y

In this section, we generalize several results from the baseline model to allow both players’
actions to (additively) enter both signals:

dXt = (ât + νat)dt+ σXdZ
X
t , ν ∈ [0, 1] (S.51)

dYt = (at + ν̂ât)dt+ σY dZ
Y
t , ν̂ ∈ [0, 1]. (S.52)

Subsection S.4.1 extends our results from Section 3 in the paper. First, Lemma S.7
establishes a generalized version of our representation result (Lemma 1 in the paper). Second,
Lemma S.8, stated for the more general signal structure above, verifies that the public state
corresponds to the belief about θ using only the public information. Third, Lemma S.9
presents laws of motion for (M,L) for arbitrary strategies for our sender. These results
enable us to set up a best-response problem for our sender that is analogous to the one
from Section 3.3 in the paper. Subsequently, Lemma S.10 establishes that 0 < γ ≤ γo and
0 ≤ χ < 1 (in particular, confirming that the law of motion of L is always well-defined), and
that the ODE system for (γ, χ) admits a unique solution (which confirms that the (γ, χ)

delivered by our fixed-point approach indeed corresponds to the variances of the players’
learning). We conclude this part by showing a one-to-one mapping between χ and γ for this
general case (Proposition S.3), analogous to Proposition 9 in the paper.

Finally, in Subsection S.4.2 we leverage these results and our fixed-point method to
provide an existence result analogous to Theorem 1 but for our trading game from Section
4.3. Subsection S.4.4 contains the proof of Proposition 7 in the paper.

S.4.1 Technical Results

Lemma S.7. Suppose that (X, Y ) is driven by (S.51)–(S.52) and the receiver believes that
(10)—i.e., Mt = χtθ+(1−χt)Lt, with χ a deterministic function—holds, where (Lt)t∈[0,T ] is
a process that depends only on the public information.3 Then (10) holds at all times if and
only if Lt = E[θ|FX

t ] under (S.51)–(S.52), χt = Et[(Mt − M̂t)
2]/γt, and

γ̇t = −γ2t (β3t + β1tχt)
2Σ, γ0 = γo, (S.53)

χ̇t = γt(β3t + β1tχt)
2Σ(1− χt)− γt(ν[β3t + β1tχt] + δ1tχt)

2/σ2
X , χ0 = 0, (S.54)

dLt = (l0t + l1tLt)dt+BtdXt, L0 = µ, (S.55)

where Σ := ν2/σ2
X + 1/σ2

Y and (l0t, l1t, Bt) are deterministic and given in (S.72)-(S.74).
3Formally, (Lt)t∈[0,T ] can be any square-integrable process progressively measurable w.r.t. (FX

t )t∈[0,T ].
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Proof. Let L in (10) denote a square-integrable process that is progressively measurable with
respect to (FX

t )t∈[0,T ]. Inserting (10) into (8) yields at = α0t+α2tLt+α3tθ which the receiver
thinks drives X and Y , where α0t = β0t, α2t = β2t + β1t(1− χt), and α3t = β3t + β1tχt.

The receiver’s filtering problem is then conditionally Gaussian. Specifically, define

dX̂t := dXt − [ât + ν(α0t + α2tLt)]dt = να3tθdt+ σXdZ
X
t

dŶt := dYt − [α0t + α2tLt + ν̂ât]dt = α3tθdt+ σY dZ
Y
t ,

which are in the receiver’s information set, and where the last equalities hold from his
perspective. By Theorems 12.6 and 12.7 in Liptser and Shiryaev (1977), his posterior belief
is Gaussian with mean M̂t and variance γ1t (simply γt in the main body) that evolve as

dM̂t =
να3tγ1t
σ2
X

[dX̂t − να3tM̂tdt] +
α3tγ1t
σ2
Y

[dŶt − α3tM̂tdt] and ˙γ1t = −γ21tα2
3tΣ, (S.56)

with Σ := ν2/σ2
X+1/σ2

Y . (These expressions still hold after deviations, which go undetected.)
The sender can affect M̂t via her choice of actions. Indeed, using that dX̂t = ν(at−α0t−

α2tLt)dt+ σXdZ
X
t and dŶt = (at − α0t − α2tLt)dt+ σY dZ

Y
t from her standpoint,

dM̂t = (κ0t + κ1tat + κ2tM̂t)dt+BX
t dZ

X
t +BY

t dZ
Y
t , where (S.57)

κ1t = α3tγ1tΣ, κ0t = −κ1t[α0t + α2tLt], κ2t = −α3tκ1t, B
X
t =

να3tγ1t
σX

, BY
t =

α3tγ1t
σY

.(S.58)

On the other hand, since the sender always thinks that the receiver is on path, the public
signal evolves, from her perspective, as dXt = (νat + δ0t + δ1tM̂tdt + δ2tLt)dt + σXdZ

X
t .

Because the dynamics of M̂ and X have drifts that are affine in M̂—with intercepts and
slopes that are in the sender’s information set—and deterministic volatilities, the pair (M̂,X)

is conditionally Gaussian. Thus, by the filtering equations in Theorem 12.7 in Liptser and
Shiryaev (1977), Mt := Et[M̂t] and γ2t := Et[(Mt − M̂t)

2] satisfy

dMt = (κ0t + κ1tat + κ2tMt)dt︸ ︷︷ ︸
=Et[(κ0t+κ1tat+κ2tM̂t)dt]

+
σXB

X
t + γ2tδ1t
σ2
X

[dXt − (νat + δ0t + δ1tMt + δ2tLt)dt](S.59)

γ̇2t = 2κ2tγ2t + (BX
t )

2 + (BY
t )

2 −
(
BX
t + γ2tδ1t/σX

)2
, (S.60)

with dZt := [dXt − (νat + δ0t + δ1tMt + δ2tLt)dt]/σX a Brownian motion from the sender’s
standpoint.4 Critically, observe that since (S.59) is linear, one can solve for Mt as an explicit

4Theorem 12.7 in Liptser and Shiryaev (1977) is stated for actions that depend on (θ,X) exclusively, but
it also applies to those that condition on past play (i.e., on M). Indeed, from (S.57), M̂t = M̂†

t + At where
M†

t = M†
t [Z

X
s , ZY

t ; s < t] and At =
´ t
0
e
´ s
0
κ2uduκ1sasds. Applying the theorem to (M̂†

t , Xt−
´ t
0
νasds)t∈[0,T ],
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function of past actions (as)s<t and past realizations of the public history (Xs)s<t.
Inserting at = β0t + β1tMt + β2tLt + β3tθ in (S.59) and collecting terms yields

dMt = [κ̂0t + κ̂1tMt + κ̂2tLt + κ̂3tθ]dt+ B̂tdXt, where (S.61)

κ̂0t = α3tγ1tΣ(β0t − α0t)−
να3tγ1t + γ2tδ1t

σ2
X

[νβ0t + δ0t] (S.62)

κ̂1t = α3tγ1tΣ(β1t − α3t)−
να3tγ1t + γ2tδ1t

σ2
X

[νβ1t + δ1t] (S.63)

κ̂2t = α3tγ1tΣ(β2t − α2t)−
να3tγ1t + γ2tδ1t

σ2
X

[νβ2t + δ2t] (S.64)

κ̂3t =

[
α3tγ1t
σ2
Y

− νγ2tδ1t
σ2
X

]
β3t, B̂t =

να3tγ1t + γ2tδ1t
σ2
X

(S.65)

Let R(t, s) = exp(
´ t
s
κ̂1udu). Since M0 = µ, we have

Mt = R(t, 0)µ+ θ

ˆ t

0

R(t, s)κ̂3sds+

ˆ t

0

R(t, s)[κ̂0s + κ̂2sLs]ds+

ˆ t

0

R(t, s)B̂sdXs.

As in the main body, imposing equality with (10) yields the equations

χt =

ˆ t

0

R(t, s)κ̂3sds and Lt =
R(t, 0)µ+

´ t
0
R(t, s)[κ̂0s + κ̂2sLs]ds+

´ t
0
R(t, s)B̂sdXs

1− χt
. (S.66)

The validity of the construction boils down to finding a solution to the previously stated
equation for χ that takes values in [0, 1). Indeed, when this is the case, it is easy to see that

dLt = {Lt[κ̂1t + κ̂2t + κ̂3t]dt+ κ̂0tdt+ B̂tdXt}/(1− χt), (S.67)

from which it is easy to conclude that L is a (linear) function of X as conjectured.
We will find a solution to the χ-equation that is C1 with values in [0, 1). Differentiating

χt =
´ t
0
R(t, s)κ̂3sds then yields an ODE for χ as below that is coupled with γ1 and γ2:

γ̇1t = −γ21t(β3t + β1tχt)
2Σ (S.68)

γ̇2t = −2γ2tγ1t(β3t + β1tχt)
2Σ + γ21t(β3t + β1tχt)

2Σ

− (νγ1t(β3t + β1tχt) + γ2tδ1t)
2 /σ2

X

(S.69)

χ̇t = γ1t(β3t + β1tχt)
2Σ(1− χt)

− (ν[β3t + β1tχt] + δ1tχt) (νγ1t(β3t + β1tχt) + γ2tδ1t) /σ
2
X .

(S.70)

yields a posterior mean M†
t and variance γ†

2t for M̂† such that M† +At = Mt as in (S.59) and γ2t = γ†
2t.
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The identity χ = γ2/γ1 ∈ [0, 1) can be established by the same steps as in the baseline model.
Setting γ2 = χγ1 in the third ODE, and writing γ for γ1, the first and third ODEs become
(S.53)–(S.54). Using the expressions that define (⃗̂κ, B̂) yields that (S.67) becomes

dLt = (ℓ0t + ℓ1tLt)dt+BtdXt, (S.71)

where

l0t = −γt(νβ0t + δ0t)(να3t + χtδ1t)

σ2
X(1− χt)

(S.72)

l1t = −γt[ν(β1t + β2t + β3t) + δ1t + δ2t](να3t + χtδ1t)

σ2
X(1− χt)

(S.73)

Bt =
να3tγt + γtχtδ1t
σ2
X(1− χt)

. (S.74)

That Lt coincides with E[θ|FX
t ] is proved in Lemma S.8 below. Note that by setting ν = 0

in (S.71)-(S.74), we recover the law of motion for L, (A.10), in the main paper.

Lemma S.8 (State L as a Public Belief). The process L is the belief about θ held by an

outsider who observes only X. Moreover,

(
θ

M̂t

)
|FX

t ∼ N (M out
t , γoutt ) where M out

t =

(
Lt

Lt

)

and γoutt =

(
γt

1−χt

γtχt

1−χt

γtχt

1−χt

γtχt

1−χt

)
.

Proof. The outsider jointly filters the state vt = (θ, M̂t)
′. For the evolution of the state and

the signal, we adopt notation from Section 12.3 in Liptser and Shiryaev (1977). From the
outsider’s perspective, both players (and in particular player 2) are on the equilibrium path,
and thus the outsider believes that vt evolves as

dvt = a1(t,X)vtdt+ b1(t,X)dW1(t) + b2(t,X)dW2(t),

where a1(t,X) :=

(
0 0

α2
3tγtΣ −α2

3tγtΣ

)
, b1(t,X) :=

(
0 0

0 α3tγt
σY

)
, b2(t,X) :=

(
0

να3tγt
σX

)
,

W1(t) :=

(
W11(t)

ZY
t

)
and W2(t) := ZX

t , where W11(t) is a standard Brownian motion and

W11(t), Z
Y
t and ZX

t are mutually independent. The signal is

dXout
t := dXt − [δ0t + δ2tLt + ν(α0t + α2tLt)]dt = A1(t,X)vt +B1(t,X)W1(t) +B2(t,X)W2(t),

where A1(t,X) :=
(
να3t δ1t

)
, B1(t,X) :=

(
0 0

)
and B2(t,X) = σX .

30



Hence, denoting M out
t =

(
M out

t,1

M out
t,2

)
and γoutt =

(
γoutt,11 γoutt,12

γoutt,21 γoutt,22

)
and imposing γoutt,21 = γoutt,12,

we have from the standard filtering equations of Liptser and Shiryaev (1977, Theorem 12.7)

that

(
θ

M̂t

)
|FX

t ∼ N (M out
t , γoutt ), where M out and γout are the unique solutions to

dM out
t = a1(t,X)M out

t +
1

σ2
X

[(
0

να3tγt

)
+ γoutt

(
να3t

δ1t

)]{
dXout

t − (να3tM
out
t,1 + δ1tM

out
t,2 )dt

}
(S.75)

γ̇outt = a1(t,X)γoutt + γoutt a∗1 +

(
0 0

0 Σ2γ2t α
2
3t

)
(S.76)

− 1

σ2
X

[(
0

να3tγt

)
+ γoutt

(
να3t

δ1t

)][(
0

να3tγt

)
+ γoutt

(
να3t

δ1t

)]∗

with initial conditions M out
0 =

(
µ

µ

)
and γout0 =

(
γo 0

0 0

)
.

Recall that γ1 and χ satisfy γ̇1t = −α2
3tγ

2
tΣ and χ̇t = γtα

2
3tΣ(1−χt)−γt(να3t+δ1tχt)

2/σ2
X

with initial conditions γ1,0 = γo and χ0 = 0. It is straightforward to verify that γoutt =(
γt

1−χt

γtχt

1−χt

γtχt

1−χt

γtχt

1−χt

)
satisfies the γout-ODE above along with given initial condition. Moreover,

γoutt is positive semidefinite as its leading principal minors are positive multiples of 1 and
χ− χ2 > 0.

Next, substitute given the solution γoutt into (S.75) and subtract the equation for the
second component from its first to obtain the following SDE for M̄ :=M out

1 −M out
2 : dM̄t =

−ΣM̄tα
2
3tγt with initial condition M̄0 = 0. Now if M̄t > 0, then dM̄t < 0, giving us a

contradiction; likewise for the case M̄t < 0. It follows that M̄t = 0, and thus M out
t,1 = M out

t,2 ,
for all t ≥ 0. Substituting this back into (S.75), we have

dM out
t,1 =

γt(να3t + δ1tχt)

σ2
X(1− χt)

(dXout
t − (να3t + δ1t)M

out
t,1 dt)

=
γt(να3t + δ1tχt)

σ2
X(1− χt)

[dXt − (να0t + δ0t +M out
1,t (να3t + δ1t) + Lt(να2t + δ2t))dt]. (S.77)

On the other hand, we have

dLt =
Lt[κ̂1t + κ̂2t + κ̂3t]dt+ κ̂0tdt+ B̂tdXt

1− χt
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=
γt(να3t + δ1tχt)

σ2
X(1− χt)

[dXt − (δ0t + να0t + Lt[ν(α2t + α3t) + δ1t + δ2t])dt] . (S.78)

Hence L̄t := M out
t,1 − Lt satisfies dL̄t = −γt(να3t+δ1tχt)

σ2
X(1−χt)

L̄t(να3t + δ1t) with initial condition
L̄0 = µ− µ = 0. We conclude that L̄t = 0, and thus Lt =M out

t,1 =M out
t,2 , for all t ≥ 0.

Lemma S.9 (Sender’s controlled dynamics). Suppose that the receiver follows (9) and be-
lieves that (8) and (10) hold. Then, if the sender follows (a′t)t∈[0,T ],

dMt = γtα3t

(
ν2

σ2
X

+
1

σ2
Y

)
(a′t − [α0t + α2tLt + α3tMt])dt+

να3tγt + χtγtδ1t
σX

dZt (S.79)

dLt =
γt(να3t + δ1tχt)

σ2
X(1− χt)

{[ν(a′t − [α0t + (α2t + α3t)Lt]) + δ1t(Mt − Lt)] dt+ σXdZt} , (S.80)

where Zt := 1
σX

[Xt−
´ t
0
(νa′s+δ0s+δ1sMs+δ2sLs)ds] is a Brownian motion from the sender’s

perspective. Also, Et[(Mt − M̂t)
2] = γtχt for any such (a′t)t∈[0,T ].

Proof. Equation (S.79) follows from using (S.58) in (S.59), and (S.80) follows from (S.55)
using (S.72)-(S.74) and that dXt = (νat + δ0t + δ2tLt + δ1tMt)dt + σXdZt from the sender’s
perspective.

Lemma S.10 (Learning ODEs). Suppose that (β1, β3, δ1) are differentiable. Then, there is
a unique solution to (S.53)–(S.54), and this solution satisfies 0 < γt ≤ γo and 0 ≤ χt < 1

for all t ∈ [0, T ], with strict inequalities over (0, T ] if β3,0 ̸= 0. The same conclusions hold if
δ1t = ûâθ + ûaâα3t. Moreover, in both cases, χt ≤ 1− γt/γ

o for all t ∈ [0, T ].

Proof. The same arguments from the baseline proof go through, so we focus on proving the
tighter inequality χt ≤ 1− γt/γ

o.
We now use the comparison theorem. Let fχ(t, χt) denote the right hand side of (S.54).

Note that zt = 1− γt/γ
o solves the ODE

żt = f z(t, zt) := γt(β1tχt + β3t)
2Σ(1− zt) (S.81)

with z0 = 0. Thus χ0 = z0. Further, note that f z(t, zt) ≥ fχ(t, zt), and hence

0 = χ̇t − fχ(t, χt) = żt − f z(t, zt) ≤ żt − fχ(t, zt). (S.82)

By the comparison theorem, χt ≤ zt for all t ∈ [0, T ], as desired. The same argument applies
when δ1t = ûâθ + ûaâα3t in (S.54).

The following result generalizes the one-to-one mapping between γ and χ in Proposition
9 to the case where the sender’s action enters the public signal, as in (S.51).
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Proposition S.3 (One-to-one mapping). Suppose that signals have the form (S.51)-(S.52),
and suppose that ûâθ = 0. Then χt =

c1c2(1−[γt/γo]d)
c1+c2[γt/γo]d

for some positive scalars c1, c2 and d.
Thus, χt ∈ [0, c2) when γt ∈ (0, γo].

Proof. We first derive a candidate mapping for the general case of a drift ât+ νat, ν ∈ [0, 1],
in X. Suppose δ1 = ûaâα3. The χ-ODE for ν ∈ [0, 1] boils down to

χ̇t = γtα
2
3t

([
ν2

σ2
X

+
1

σ2
Y

]
(1− χt)−

(ν + ûaâχt)
2

σ2
X

)
=: −γtα2

3tQ(χt).

If f : [0, χ̄) → [0, γo], some χ̄ ∈ (0, 1], is differentiable and f(χt) = γt for all t ≥ 0, then
f ′(χt)χ̇t = γ̇t. When α3t ̸= 0, f ′(χt)

f(χt)
= Σ

Q(χt)
. Hence, we solve the ODE f ′(χ)

f(χ)
= Σ

Q(χ)
for

χ ∈ (0, χ̄) where f(0) = γo.

To this end, let c2 :=
√
b2+4(ûaâ)2/[σXσY ]2−b

2(ûaâ/σX)2
and −c1 :=

−
√
b2+4(ûaâ)2/[σXσY ]2−b

2(ûaâ/σX)2
, where b :=

[ν2/σ2
X + 1/σ2

Y ] + 2νûaâ/σ
2
X , be the roots of the convex quadratic Q above. Note that these

are well-defined since ûâθ and Assumption 1 part (ii) imply that ûaâ ̸= 0.
Clearly, −c1 < 0 < c2. Also, c2 ≤ 1 asQ(1) ≥ 0. Thus, Σ

Q(χ)
= − σ2

XΣ

(ûaâ)2(c1+c2)

[
1

χ+c1
− 1

χ−c2

]
is well defined (and negative) over [0, c2) with 1/(χ+ c1) > 0 and −1/(χ− c2) > 0 over the
same domain. We can then set χ̄ = c2 and solve

´ χ
0

f ′(s)
f(s)

ds = − σ2
XΣ

(ûaâ)2(c1+c2)
log
(
χ+c1
c2−χ

c2
c1

)
,

which yields the decreasing function f(χ) = f(0)
(
c1
c2

)1/d (
c2−χ
χ+c1

)1/d
, where

1/d := σ2
XΣ/[(ûaâ)

2(c1 + c2)] > 0.

Imposing f(0) = γo and inverting yields χ(γ) = f−1(γ) as given in the lemma. Note that
χ(γo) = 0 and χ(0) = c2. Since χ is decreasing, we have χt ∈ [0, c2) when γt ∈ (0, γo].
Finally, routine calculations akin to those in the proof of Proposition 9 confirm that this
function satisfies the χ-ODE for ν ̸= 0.

S.4.2 Trading Game (Section 4.3): Existence Result

The following result adapts Theorem 1 to our trading game.

Proposition S.4. There exists a scalar C > 0 independent of γo such that if T < C/γo,
there exists an LME.

Proof of Proposition S.4. The proof has the same structure as that for Theorem 1. Below we
describe the main variations—we refer the reader to that central proof for all the details. We
characterize a LME in which the sender trades according to at = β3t(θ − Lt) + β1t(Mt − Lt)
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and the sender’s value function has the form

V (θ,m, ℓ, t) = v0t + vAt(θ − ℓ)2 + vBt(θ −m)2 + vCt(m− ℓ)2, (S.83)

where (v0, vA, vB, vC) are C1 functions of time. Clearly, the receiver’s strategy must be
ât = δ1t(M̂t − Lt), where δ1t := 1 for all t ∈ [0, T ]. The laws of motion for M̂,M , and L are
given by (S.56), (S.79), and (S.80), respectively.

By imposing the first order condition on the right hand side of the HJB equation and
matching coefficients, we obtain identities allowing us to solve for (vB, vC) in terms of
(γ, χ, β1, β3, vA).

Using these identities (and their derivatives) in the first order condition, we obtain a core
subsystem of ODEs in (γ, χ, β1, β3, vA). We use a change of variables ṽA = vAγ. Since the
myopic coefficients (βm1t , β

m
3t) = (0, 1) are constant over time, there is no need to work with

centered coefficients. Going forward in time, the ODEs for (β1, β3, ṽA) have the form

ẋt =
γthx(β1t, β3t, ṽAt, χt)

σ2
Xσ

2
Y (1− χt)2j(β1t, β3t, ṽAt, χt)

, x ∈ {β1, β3},

˙̃vAt = γt

{
ṽAt

hv,1(β1t, β3t, χt)

σ2
Xσ

2
Y (1− χt)

+ hv,2(β1t, β3t, χt)

}
,

where hx, j, hv,1, hv,2 are polynomials for x ∈ {β1, β3}. The full expressions for these ODEs
can be found in the Mathematica file spm.nb on our websites.

Of particular interest for our bounding exercise is the denominator term j, which involves
more terms than in the baseline model and reads

j(β1t, β3t, ṽAt, χt) = σ4
Xα3t − χtσ

2
Xα3t(σ

2
X + σ2

Y [1 + χt] + 2ṽAt)]

+ σ2
Y χt[χt(2ṽAt + σ2

X(1− β1t[1− χt]))− σ2
X ],

(S.84)

where α3t = β1tχt + β3t. The terminal conditions are (β1T , β3T , ṽAT ) = (0, 1, 0).

Also going forward the ODEs for (γ, χ) are

γ̇t = −γ2t (β3t + β1tχt)
2Σ (S.85)

χ̇t = γt(β3t + β1tχt)
2Σ(1− χt)− γt(ν[β3t + β1tχt] + δ1tχt)

2/σ2
X , (S.86)

where ν = 1 and δ1t = 1, subject to (γ0, χ0) = (γo, 0).
These ODEs and initial/terminal conditions define a BVP in z := (γ, χ, β1, β3, ṽA) that

we write as żt = F (zt).

Proposition S.5. There exists C > 0 independent of γo such that there exists a solution to
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the BVP whenever T < C/γo.

Proof. We follow the steps of the original proof, modifying them as needed.
Step 1: Define the domain for our fixed point equation. Given K ∈ (0, 1), we define Γ(K)

as the space of uniformly Lipschitz continuous functions γ : [0, T ] → [0, γo] with uniform
Lipschitz constant (γo)2(2K + 1)2/σ2

Y . For fixed K ∈ (0, 1) and fixed χ̄ ∈ (0, 1) we define
X(K, χ̄) as the space of Lipschitz continuous functions χ : [0, T ] → [0, χ̄] with uniform
Lipschitz constant γo [(2K + 1)2Σ + (2K + 2)2/σ2

X ].
We desire to choose K and χ(K) so that the RHS of the ODEs for β1 and β3 are well-

defined for (β1, β3, ṽA, χ) ∈ B(K) × [0, χ(K)], where B(K) := [−K,K] × [1 − K, 1 + K] ×
[−K,K]; in particular, we choose χ to ensure that the polynomial j in the denominator
of β̇1t and β̇3t is bounded away from zero. Recalling (S.84), it is easy to see that for any
K ∈ (0, 1), there exists χ(K) ∈ (0, 1) such that j is positive and bounded away from zero
over the domain B(K)× [0, χ(K)]. Of course, since on this domain χt ≤ χ(K) < 1, the term
(1− χt) on the right hand sides of (β̇1t, β̇3t, ˙̃vAt) is positive and bounded away from zero.

In some abuse of notation, define X(K) = X(K,χ(K)) and Λ(K) := Γ(K)×X(K).

Step 2: Given λ = (γ, χ) ∈ Λ(K), define a backward initial value problem (IVP) for
(β1, β3, ṽA), and establish sufficient conditions for this IVP to have a unique solution. Recall
that the hat notation reverses time. We define the backward IVP

ḃt = f λ̂(bt, t) s.t. b0 = (0, 1, 0). (IVPbwd(λ̂))

We argue that there exists a positive threshold T bwd(γo;K) ∈ Ω(1/γo) such that for all
λ ∈ Λ(K), a unique solution b(·;λ) to (IVPbwd(λ̂)) exists over [0, T ] and satisfies b ∈ B(K).
By standard results, a local solution exists, and solutions are unique given existence. Now
if over some interval of existence we have bt ∈ B(K) for i ∈ {1, 2, 3}, then we also have

|bit − bi0| ≤
∣∣∣∣ˆ t

0

ḃit dt

∣∣∣∣ ≤ ˆ t

0

γohi(K) dt = tγohi(K), (S.87)

where hi(K) is a positive scalar that bounds the magnitude of the right hand side the
associated ODE using bt ∈ B(K) and χt ∈ [0, χ(K)], where the latter holds by the definition
of our domain Λ(K). Now for all K ∈ (0, 1), define T bwd(γo;K) = mini∈{1,2,3}

K
γohi(K)

> 0.
Clearly, T bwd(γo;K) ∈ Ω(1/γo). By an analogous argument to the one in the baseline proof,
this construction implies that for all T < T bwd(γo;K) and λ ∈ Λ(K), (IVPbwd(λ̂)) has a
unique solution over [0, T ] satisfying bt ∈ B(K) for all t ∈ [0, T ]. We denote this solution by
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b(·;λ), and we define the functional

q(λ) := (b̂1(·;λ), b̂2(·;λ))

mapping λ to forward -oriented solutions for β1 and β3, to be used in the forward-evolving
learning ODEs (S.85)-(S.86).
Step 3: The operator λ 7→ q(λ) is continuous and ||q(λ)− (0, 1)||∞ < K for all λ ∈ Λ(K).
Continuity follows from Lemma C.3 and the bound follows from Step 2.
Step 4: Construct a continuous self-map on Λ(K) using the IVP for the learning ODEs.
As before, for all λ ∈ Λ(K), we define an IVP for λ = (λ1,λ2),

λ̇t = fq(λ)(λt, t) s.t. λ0 = (γo, 0), (IVPfwd(q(λ)))

consisting of the two forward learning ODEs (S.85)-(S.86), where (q1(λ), q2(λ)) play the role
of (β1, β3).

There is a unique solution λ(q(λ)) over [0, T ] to (IVPfwd(q(λ))) by Lemma S.10 and
it satisfies λt ∈ [0, γo] × [0, 1] for all time. The arguments that this solution satisfies the
Lipschitz bounds defining Λ(K) are the same as before.

However, there is one extra step to ensure that λ(q(λ)) ∈ Λ(K): we must verify that
λ2 ∈ [0, χ(K)]. To that end, note that the solution (γ, χ) to the system (S.85)-(S.86) with
initial conditions (γ0, χ0) = (γo, 0) satisfies χt ≤ 1− γt/γ

o for all t ∈ [0, T ] by Lemma S.10,
so λ2(q(λ)) ≤ 1− λ1(q(λ))/γ

o. In turn, given a bound |β3t + β1tχt| ≤ A, it is easy to show
that γt ≥ γo

TγoA2Σ+1
. As |q1(λ)|, |q2(λ)| ≤ K and λ2 ∈ [0, 1], we have |q2(λ)+q1(λ)λ2(q(λ))| ≤

2K + 1, so letting 2K + 1 play the role of A, we have λ1(q(λ)) ≥ γo

Tγo(2K+1)2Σ+1
. Combining

these inequalities,

λ2(q(λ)) ≤ 1− λ1(q(λ))/γ
o ≤ 1− 1

Tγo(2K + 1)2Σ + 1
=

Tγo(2K + 1)2Σ

Tγo(2K + 1)2Σ + 1
. (S.88)

There exists a threshold T fwd(γo;K) ∈ Ω(1/γo) such that T < T fwd(γo;K) implies the last
upper bound in (S.88) is less than χ(K).

Thus, if we define T (γo;K) := min{T fwd(γo;K), T bwd(γo;K)}, T < T (γo;K) implies
that g(λ) := λ(q(λ)) is a self-map on Λ(K), and it is continuous by the same reasoning as
before. We conclude by optimizing over K ∈ (0, 1), defining T (γo) := maxK∈(0,1) T (γ

o;K)

and finally C := T (γo)γo.5

5Note that as K ↑ 1, χ(K) ↓ 0, so T fwd(γo;K) ↓ 0. And as K ↓ 0, T bwd(γo;K) ↓ 0. Hence, T (γo;K) is
maximized at interior K.
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Having proven Proposition S.5, it is straightforward to recover the value function coef-
ficients (vB, vC) from the identities used earlier, and the ODE for v0 has a unique solution
since it is linear as usual, concluding the proof.

S.4.3 Trading Game (Section 4.3): Proof of Proposition 7

Proof of Proposition 7. To prove that β0t = 0, β1t + β2t + β3t = 0 in any LME, we follow
similar steps to those used in the proof of Proposition 2. Using the general form of the con-
jectured value function in Section 5 and deriving the ODEs from the sender’s best response
problem (see spm.nb), it is easy to verify that (β0, v3) = (0, 0) jointly solve their respective
ODEs and the terminal conditions (β0T , v3T ) = 0 in any LME. By the Picard-Lindelöf theo-
rem, these are the unique solutions. Next, we show that St := β1t + β2t + β3t = 0 for all t.
From the terminal conditions β1T = 0, β2T = −1, and β3T = 1, we have ST = 0.

Define the following candidate solution for v8:

vcand
8t =

σ2
Y [−σ2

X + σ2
Xβ1t(1− χt)

2 + χt(σ
2
X + 2v6tγt)]

(σ2
X + σ2

Y )α3tγt(1− χt)
(S.89)

+
α3t[σ

2
Xσ

2
Y (1− χt) + 2v6tγt(−σ2

X [1− χt] + σ2
Y χt)]

(σ2
X + σ2

Y )α3tγt(1− χt)
, (S.90)

which satisfies vcand
8T = 0 = v8T . Define v∆8t = vcand

8t − v8t, which has terminal value v∆8T = 0.
We can construct a pair of ODEs for St and v∆8t by differentiating each and using β2t =

St − (β1t + β3t) to eliminate β2t and v8t = v∆8t − vcand
8t to eliminate v8t in each.

Routine calculation then shows that (St, v
∆
8t) = (0, 0) solve the ODEs for St and v∆8t and

their terminal conditions. By Picard-Lindelöf, this is the unique solution, so in particular,
β1t+β2t+β3t = 0 in any solution. Hence at = β1tMt+β2tLt+β3tθ = β3t(θ−Lt)+β1t(Mt−Lt).
Since α3T = β1TχT+β3T = 1 > 0, and the right hand side of the ODE for α3 contains a factor
of α3, a standard comparison theorem argument establishes that α3t > 0 for all t ∈ [0, T ].

On the path of play, using the representation Mt = χtθ + (1 − χt)Lt, we have at =

β3t(θ−Lt)+β1t(Mt−Lt) = β3t(θ−Lt)+β1t([χtθ+(1−χt)Lt]−Lt) = α3t(θ−Lt). Substituting
the equilibrium strategies into (S.80) yields dLt = ΛtdXt, where Λt =

γXt (α3t+χt)

σ2
X

.

S.4.4 Trading Game (Section 4.3): Footnotes 31 and 33

Proofs for Footnote 31 We now show that β1t > 0, β3t ∈ (0, 1), and β2t < 0; while
dα3t

dt
> 0, dβ3t

dt
> 0, and dβ1t

dt
< 0. We begin with some preliminary observations. Fix any

K ∈ (0, 1) and note that the right hand sides of the ODEs for (γ, χ, β1, β3, ṽA) are of class
C1 in these variables on [0, γo] × [0, χ(K)] × B(K), where χ(K) and B(K) were defined in
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the proof of Proposition S.5. Further, note that the proof of Proposition S.5 shows that
for any K ∈ (0, 1), there exists T (γo;K) such that for all T < T (γo;K), a solution to the
BVP exists, and in turn a LME exists, for which χt ≤ χ(K) and (β1t, β3t, ṽAt) ∈ B(K) for
all t ∈ [0, T ]. (And recall γt ∈ (0, γo] and χt ≥ 0 from Lemma S.10.) Finally, recall that
T (γo;K) → 0 as K → 0, and thus χ → 0 uniformly by the upper bound (S.88). Hence, as
K → 0, we have χ→ 0, β1 → 0, β3 → 1, and α → 1 uniformly, and in particular, β3 > 0.

Evaluating the right hand sides of (β̇1t, β̇3t, α̇3t) at (χt, β1t, β3t, α3t) = (0, 0, 1, 1) yields(
−α3t(1−α3t)γt

σ2
X

,
α3
3tγt
σ2
X
,
α3
3tγt
σ2
X

)
. Further, for all sufficiently small K, all T < T (γo;K), and

t ∈ [0, T ], α3
3tγt
σ2
X

is positive and bounded away from zero. Hence, for sufficiently small K
and any T < T (γo;K), we have that β3 and α3 are strictly increasing.

We now show that β̇1 < 0; given that its terminal value is zero, this implies β1 > 0, and
given β3 > 0, this in turn implies β2 < 0. Since β̇1 converges to 0 uniformly, to sign β̇1,
we examine the second derivative, β̈1. It is easy to show that for small K, β̇1t = 0 implies
|β̈1t−α3

3tγ
2
t /σ

4
X | < ϵ(K), where ϵ(K) → 0 as K → 0. Since α3

3tγ
2
t /σ

4
X is strictly positive and

bounded away from zero, this shows that for sufficiently small K, β̇1t = 0 implies β̈1t > 0.
Further, it is easy to check that in any LME (with no constraints on time horizon) β̇1T = 0.
Hence, β̇1t can only cross zero from below: we have β̇1t < 0 for all t ∈ [0, T ).

Proof or Footnote 33 The following proposition formalizes the claim made in footnote
33. We use superscript leak to denote σY ∈ (0,+∞) and no leak to denote σY = +∞

Proposition S.6. Fix σY ∈ (0,+∞), and suppose that a LME exists over [0, T ]. For any
such LME, there exists a nonzero measure of times t for which Λt > Λno leak

t .

Proof. First, note that α3T = 1 for all σY ∈ (0,+∞)∪{+∞}, while χleak
T > 0 and χno leak

T = 0.
Thus αleak

3T + χleak
T > αno leak

3T + χno leak
T . We prove the result in each of two cases.

Case (i): γX,leakT ≥ γX,no leak
T . Since αleak

3T +χleak
T > αno leak

3T +χno leak
T , we have Λleak

T > Λno leak
T

unambiguously. By continuity, Λleak
t > Λno leak

t for all t in a neighborhood of T .
Case (ii): γX,leakT < γX,no leak

T . Here, since the initial values coincide, γX,leak0 = γX,no leak
0 =

γo, we must have γ̇X,leakt < γ̇X,no leak
t for a nonzero measure of times. It is easy to verify that

γ̇Xt = −σ2
XΛ

2
t , so it follows that Λleak

t > Λno leak
t for a nonzero measure of times.

Figure 1 below compares equilibrium strategies, signaling coefficients, and price impact
for a myopic receiver, as in our baseline model, and a forward-looking receiver with discount
rate r̂ = 0 (like the sender). The plots illustrate that the qualitative properties of our
equilibrium are preserved (except for the obvious change in the receiver’s signaling coefficient
δ1). Relative to a patient receiver, a myopic receiver trades more aggressively (Figure 1c),
as he ignores the price impact of his own trades. Because of this, the sender’s trades have
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more price impact, so the sender trades less aggressively on her private information θ if the
receiver is myopic: β3 falls as in Figure 1b. However, Figure 1a shows that β1 moves in the
opposite direction: if the sender has traded more in the past, the expects stronger upward
drift in the price in the presence of a myopic receiver, and to arbitrage this, she trades more
aggressively on the second-order private information. Figure 1d shows the effect on the total
signaling coefficient is small since β1 and δ1 move in the opposite direction that β3 moves.
Finally, Figure 1e shows that with a myopic receiver, price impact is: initially lower (due to
the sender’s lower β3); then rises more quickly (due to the receiver’s contribution to the total
signaling coefficient); and finally, it falls faster as T approaches due to the market maker’s
learning, because a myopic receiver does not speed up his trades enough by the end. Here,
“single agent” refers to the case where there is no receiver, only the sender and market maker.
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Figure 1: Trading game: (γo, r, σX) = (1, 0, 1) and σY = 0.5 unless otherwise specified.
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