Supplementary Appendix to “Signaling with Private

Monitoring” (not for publication)

Gonzalo Cisternas and Aaron Kolb

December 13, 2023

Contents

S.1 Monetary Policy Game (Section 4.1): Proofs of Propositions 3 and 4
S.1.1 Proof of Proposition 3 part (). . . . . .. ... ... ... ... .. ... .
S.1.2 Proof of Proposition S.1: ox =0Case . . . . ... ... ... ... ....
S.1.3 Proof of Proposition S.1: ox =400 Case . . . ... ... ... .. ....
S.1.4 Proof of Proposition S.1: Comparison of Signaling Coefficients . . . . . . .
S.1.5 Proof of Proposition 3 part (ii) . . ... ... ... ... ... ... ...

S.1.6 Commitment Solution to Static Benchmark . . . . . . . .. .. ... ...

S.2 Reputation Game (Section 4.2): Omitted Proofs
S.2.1 Proof of Proposition 5 . . . . . .. ...
S.2.2 Proof of Proposition 6 . . . . . .. ...

S.3 Existence of Linear Markov Equilibria (Section 5): Omitted Proofs
S.3.1 Auxiliary Results . . . . . . . . .. .
S.3.2 Terminal Conditions (¢ #0) . . . . . . . .
S.3.3 Proof of Corollary C.2 . . . . . . . .. .. ...
S.3.4 Proof of Proposition 1: (g, v3) System . . . . . . ... .. ... ... ...

S.4 Extension: Both Players Affect X and Y
S.4.1 Technical Results . . . . . . ... ... .
S.4.2 Trading Game (Section 4.3): Existence Result . . . . ... .. ... .. ..
S.4.3 Trading Game (Section 4.3): Proof of Proposition 7. . . . . . .. ... ..
S.4.4 Trading Game (Section 4.3): Footnotes 31 and 33 . . . . . ... ... ...

©O© J ot W NN

12

13
13
14

20
20
20
25
26



S.1 Monetary Policy Game (Section 4.1): Proofs of Propo-

sitions 3 and 4

In this section, we prove Propositions 3 and 4. We often use NX to refer to the case ox = +o0,
where the X signal is pure noise, and pub to refer to the ox = 0 case.

We begin by proving Proposition 3(i), since only this part relates to the interior case.

S.1.1 Proof of Proposition 3 part (i)

From the proof of Proposition 2, for ox € (0, +00), By converges uniformly to as T — 0.
For the public case, we borrow the Sy-ODE (to be derived later)

501: = B5:[2r(Bor — k) + k(B + B3) /oy ], (S.1)

where (1 + B3 = 1, as we also prove later. Note that this ODE can also be obtained by
setting x; = 0 and then ox = 0 in the Sy-ODE in the proof of Proposition 2 and replacing
a3, attached to k with Bs;(B1;+ (3:). The reason for the difference is that in the interior case,
the receiver plays 0; = as, where as in the public case, the receiver plays 0; = 1 + 3 = 1.
Following the same logic as in the interior case, this converges uniformly to % as T'— 0.
(The reason the denominator carries a factor of 2 rather than 4 is again because the receiver
places full weight on M in the public case, rather than splitting this weight between M and
L.) Thus, there exists T such that for all T < T, [y is strictly higher in the public case.
Since Bor = k for both cases, it follows that for sufficiently small T', 5y is higher in the
interior case than in the public case for all ¢t < T

Before returning to prove the rest of Proposition 3, we prove the following proposition,

which subsumes Proposition 4 and establishes the properties stated in footnote 26.

Proposition S.1. Ifox € {0,400}, then an LME exists for allT > 0 and r > 0. Moreover,

(i) If ox =0, then a; = p“b 5”“1794—(1— p“b)Mt and a; = p“b—i—Mt, where ﬂ“ <0,
pub e (1/2,1), andﬂp"b<kf0rt<T; and (A BEEYY = (k,1/2).

(ii) [fax = +00, then a; = BY~X+alX0+(1—ad) )u, where ol € (1/2,1) for allt € [0,T],
X<k fort<T, and BY¥ = k. Also, d‘i’ >0 if r >0 (and constant for r =0).

If r =0, then ﬂ%b > ayq and preb < X,



S.1.2 Proof of Proposition S.1: ox =0 Case

The first-order condition applied to the right hand side of the HJB equation presented in
Appendix B and applied at the conjectured strategy a* := By + B1ym + [3:0 reads

0= —%(60,5 + Bum + B30 — 0) — %[531:(9 —m) — k] + (Barve/ 0% ) [var + 2muvg + Ovs,]. (S.2)

2 _ 2 — B 2 —
Provided Bs;, v, > 0 (as we verify later), (va, vag, vs) = <UY2(§$%k)a inﬁgl;f&): JY;Z??; 1)>7

due to the FOC holding for all (6, m,t) € R? x [0,T]. And since v;r = 0 for i € {0,...,5},
we deduce that (Gor, fir, B3r) = (k,1/2,1/2).

Inserting a* into the HJB equation, and using the previous expressions for (vor, Vag, Ust)
to replace (vyy, Uy, Ust, Doy, Var, Ust ), yields an equation in 5 := (Bo, p1, B3) and 5 Grouping by
coefficients (6,m,6?,..., etc.) in the latter yields a system of ODEs for (vg, vy, vs, B0, 81, £3):

Bor = Bar |27 (Bor — k) + W} (S.3)
i Y

Bie = Bae [r(261 — 1) + ﬁltﬁ;t%} (S.4)
L 9y

Bsr = Bar |1(2B3 — 1) — @} (S.5)
i Y

along with vg; = % +1rvor + ﬁjgt =+ %%(5& —Bit), U1 = TV — %7 and vs; = i+7‘03t — %‘?t, with
terminal conditions (vor, vi1, Va7, Bor, b1, Bsr) = (0,0,0,k,1/2,1/2), coupled with 44 =
—B%~2 /0% and initial condition 7y = 7°. After we solve the subsystem (3, 33, 7), one easily
obtains f from its ODE and then (vg,vq,v3), as the latter ODEs are uncoupled from one
another and linear in themselves.

We now solve the BVP in (5, 83, 7) using a backward IVP: abusing notation,

Bit = —Bst {T(Qﬁu -1)+ /Blt%t%} (S.6)
9y
Bst = — Pt {7“(25315 -1) - Bltfjt%} (S.7)
Y
2
e = (ﬁit%) (S.8)
Y

with initial conditions ;¢ = 309 = % and v9 = v > 0.
We shall argue via the intermediate value theorem that there exists 4" such that 47 = 7°,
thus solving the BVP. To that end, we make use of the following lemma, which establishes

uniform bounds and other properties for the equilibrium coefficients. Define BY b B+ B3¢



Lemma S.1. Fiz any v > 0. If a solution to the backward system exists over [0,T)], then
any such solution must have the following properties. If ¥ > 0, then (i) Bf“b =1 for all
t € 10,7, (ii) Bs € (1/2,1) and By € (0,1/2) for all t € (0, T, (iii) Bs > 0 is while B, < 0,
and (i) v is strictly increasing. If v¥ =0, then B1; = By = % and v = 0 for all t € [0,T].

Proof of Lemma S.1. Because the system (S.6)-(S.8) is C, the solution is unique when it
exists. If 4" = 0, it is clear by inspection that (81, 83,7) = (1/2,1/2,0) (uniquely) solves
the IVP, so assume hereafter that v* > 0. We first claim that 853 > 0. Indeed, let (¢, 83;)
denote the RHS of the f3-ODE in (S.7). Letting x; := 0 for all ¢ € [0,7], we have f59 =
1/2 > xy and By — [P (t,B3;) = 0 = @, — f%(t,x,); by the comparison theorem, the claim
follows. Now, add the ODEs that 3, and f; satisfy to get BP" = 2785 (1 — B™) with
B "> — 1. hecause the RHS is of class C?, it has a unique solution, which is clearly B> = 1.
Hence, 81 + 3 = 1 and B3 = B [r(l — 203) + M , and we maintain the label
fP(t, Bs;) for its RHS. Defining x; := 1 for all ¢ € [O,YT], then, o = 1 > f39 = 3,
Bae — fO(t, B3e) = 0 <1 =&y — f5(t,2,); thus, B3 < L and By =1 — B3 > 0.

Since 3 > 0, 7 is clearly strictly increasing, and hence v, > 0 for all ¢ € [0,7]. Now,
Ba; = % [0 + 4 } > (0 whenever 33 = %, and thus 3, > 1/2 and 1, < 1/2 for all t € (0, T.

2
403

and

We now turn to (iii). Since Bis + B3 = 0, we just show that 83 > 0; in turn, it suffices
to show that H, := f5/Bs = r(1 — 2Bs) + W > 0 for all ¢ € [0,7]. For ¢t = 0,
Hy = 47;—0?, > 0 immediate from inspection. For ¢ > 0, by solving H; = 0 for r (which is valid
as f3 # 1/2 for t > 0), whenever H; = 0, it must be that H, = (1_’8?% > (. It follows
that H; > 0 for all ¢ as desired. ) O

Given the uniform bounds established in Lemma S.1, we solve the BVP through a shooting
step, arguing by contradiction as in Bonatti et al. (2017). Note that if /" = 0, the IVP has

the (unique) static solution. Define
7 := sup{7" > 0| a solution to the IVP exists over [0,7] for all v* € (0,5")}.

Since the right-hand side of the equations that comprise the IVP are of class C!, the
solution is unique when it exists, and there is continuous dependence of the solution on the
initial conditions; in particular, the terminal value 7 is continuous in v (see Theorem on
page 397 in Hirsch et al. (2004)). Hence if there exists v € (0,7%) such that vp(y") > ~°, by
the intermediate value theorem there exists a v € (0,%) such that yp(vF) = 72, allowing
us to construct a solution to the BVP.

Suppose then that for all " € (0,%), yr(v") < 4°. In particular, because 7; is non-

decreasing in the backward system for any initial condition, we have that v, € (0,7°) does



not explode and the uniform bounds from the lemma apply. We first claim that a so-
lution to the IVP for v/ = 7 must exist over [0,7]. To see this, let [0,7) denote the
maximal interval of existence, and suppose by way of contradiction that T € (0,T]. Thus,
there must be some function z(-,75) which explodes at T', and so, for ¢ € (0,7 sufficiently
close to T, we have z(£,7) ¢ [0,1]. But for any sequence (y%),en taking values in (0,7)
such that v/ 1 4, by continuity of solutions with respect to initial conditions, we have
x(t,7) = lim, 0o 2(f,7F) € [0,1], a contradiction. We conclude that a solution to the IVP
for v¥' = 4 must exist over [0, 7], and hence, by the extensibility of the solutions (Theorem
on page 397 in Hirsch et al. (2004)), that a solution must also exist for all v¥" € [7,7 + ),
some € > 0, thereby violating the definition of 4 as a supremum.

Thus, a solution to the BVP exists. Moreover, Lemma S.1 establishes (for reversed
time) the properties of 3 stated in Proposition S.1. Since (i, + (3 = 1, we have a; =
Bor + B30 + (1 — /Bgt)Mt, which implies a; = E[at] = Bor + M,. As B3 > 1/2 is finite, we
have (3,7 > 0 allowing us to recover (v, vy, vs) through the identities stated earlier, and
then (5o, vo, v1,v3) are pinned down as argued above. As for the claims about Sy, we have
Bor = k, and from (S.3), using that £y, + B3 = 1, whenever Sy, = k we have Bor = kﬁ%” > 0,

and thus Sy must lie below &k until time 7.

S.1.3 Proof of Proposition S.1: oy = +0o Case

Proof of Lemma B.1. Anticipating a; = ag; + qigeft + 340, the receiver’s belief is ~ N(Mt, V)
where dM, = LAY, — (cop + Qe + OégtMt)dt] and v, = %a‘"’t Thus, M, = uR(t,0) +

ft R(t, S)O‘L%%[(a: — aps — Qgept)ds + oydZY] and M; = uR(t,0) —I— fo (t,s)22 (as — s —
ospt)ds where R(t, s) = exp(— ft 0‘3“7“ 3wl qy). Solving for M after inserting a; = 50t + B M, +
Bat it + P30, and imposing the representatlon it is easy to conclude that M; = x,0+ (1 — x¢)p

will hold if and only if x; = oG (1 —x:). By arguments analogous to those used for Lemma
Y

A1, the (v, x)-ODE pair admits a unique solution, and it satisfies y = 1 — ~/7°. O]

As noted in Appendix B, fixing u, (6, My, t) are the relevant states for the sender. In more
detail, the receiver expects that the sender is always on path and therefore to be playing
a; = agp + ot + a3y by the representation. The receiver’s best response is thus a; = ]Et [a;] =
Qo+ auagpi4-ais M. Taking an expectation of the sender’s flow payoff H=(a—0)*—(ay—a,—k)?]
then yields that (0, M;,t) is the relevant state on and off path. (Indeed, expanding the
squares in the previous expression, the only nontrivial component is E;[a?], which makes
E,[M?] appear; however, B [M?] = M2 + E,[(M, — M,)?] = M? + ~;x; at all histories.")

'From the proof of Lemma B.1, E¢[(Mf, — My)?] = Ei[(Jy R(t,s)%22dZY 2] = [L R(t,s)? %35 ds =
Y



The HJB equation and the law of motion for v yields a core BVP consisting of (5, 82, 53,7).
Using the same method used for the ox = 0 case, we construct a backward IVP version of

our original BVP that has a parametrized initial condition v for the yv—ODE:

Blt = a3t(2012/) ' x {7’032/ — 2B14[Bseye + 7“032/(2 —Xt)] + 25%%“ - Xt)} (S.9)
B% = a3t(2012/) b {—27”0;2//3275(2 — Xt) + 7"012/(1 — Xt) — 2%5%:(1 - Xt)} (S.10)
B3 = g (202) 71 x {7“052/(2 — X¢) + 2B [Brye — rop (2 — Xt)]} (S.11)

e = 0zi /oy (5.12)

with initial condition (31,0, B2.0, 83.0,7) = (m, ﬁ, 5,7") and where y =1 —~/7°.

We aim to prove that there exists v € (0,7°) such that the IVP has a (unique) solution
which satisfies vp = 7°. (v = 0 cannot work, as (31, B2, 83,7) = (1/2,0,1/2,0) is the unique
solution.) As argued in the proof of the ox = 0 case, it suffices to show that the system is
uniformly bounded if v, € [0,+°] over [0, T7.

The a3-ODE is dg = f*(t, ag) = rag|l — ag(2 — x¢)] and ago = ﬁ > 0. By the
comparison theorem, a3 > 0; hence, by the same argument as in the proof of Lemma S.1, ~
is increasing (in the backward system), so x = 1 — v/7° < 1 is decreasing. As azo = ﬁ

and dso > ) |t=0, the comparison theorem can be applied to a3 and 1/(2 — x) to

4 (2
show ag; > 1/(2 Z Xt) > 1/2, with both inequalities strict for all ¢t € (0,77, for all » > 0.
And az > 1/(2 — x) implies a3y < 0 (and hence &3 > 0 in the forward system) for all
t € [0, 7], with strict inequality for ¢ € (0, T if and only if » > 0; for r = 0, a3 is constant.
It follows that for all ¢t € (0,7, as < ago = 2 = <1

Now, BNX := B, + 8, + S35 satisfies BNX = rag(2 — x¢)(1 — BNX) with BYX = 1; thus
BNX = 1. This establishes that in any LME, a; = Bo; + (1 — ag¢)pt + iz,

Next, we establish uniform bounds on f5; and 53 (and hence (3;). Toward showing 3; > 0,
observe that the RHS of the 3;-ODE can be written as (¢, 81) of class C*. Letting z := 0,
we have 19 > x9 = 0 and @, — f1(t,z,) = 0 — 20‘35 rof <0 = By — A (t,51¢) and thus
by the comparison theorem, g; > z = 0. This 1mphes that 03 = a3 — Bix < a3 < 1. We
now show f3; > 1/2 and fy; < fj} = 2(2 5 < 1lforallte (0,T). For the former, recall
that G390 = 1/2, and whenever f3 = 1/2, By = a3t51”t > 0; it follows that S3; > 1/2 for all

€ (0,T]. Now 19 = 81 < 1, and for all ¢ € [0, T) (Where xt > 0),

Ve (B36[2 = xe] — [1 = xu]) (283:[2 — xo] + x¢)
4‘712/(2 — xu)*

Joexp(2 [} L2du)(—4a)ds = [y (7e/7:) (—F)ds = 72 (1/7 — 1/7°) = exa-

By — ot BT = > 0= By — [P, Bu),




from which B% > f319. By the comparison theorem, £y, < 87 < 1 for all t € (0, 7).

Via the identity BN* = 1, the uniform bounds just established imply uniform bounds
on fy. Thus, by the same one-dimensional shooting argument used for the ox = 0 case, a
solution to the BVP for (81, 52, B3, y) exists.

Going forward in time once again, 3, is uniquely determined by the terminal condition
Bor = k and ODE By = ag (2 = x)r(Bos — k) + ’“L;% which is linear in ;. Since the

right hand side reduces to = 3”’5 whenever Sy = k, we have By, < k for all t € [0, 7).

Now az > 0, and further v > 0 since «g is finite. Hence, from (S, 81, B2, 83), the
coefficients (vg, v5, v7,v9) are backed out directly as in the proof of Theorem 1. The ODEs
for the remaining value function coefficients are linear and uncoupled, so they also have

unique solutions. Thus, we have solved the HJB equation and characterized an LME.

S.1.4 Proof of Proposition S.1: Comparison of Signaling Coeffi-

cients

The ranking of signaling coefficients at time 7" is immediate: we have 5§;b =1/2>1/(2—

x7) = ad¥ (independent of the discount rate). To establish the ranking at time 0 for r = 0,

we use two lemmata that provide closed-form solutions.

Lemma S.2 (Closed-form solution: public case, r = 0). For r = 0, the monetary policy

game has a unique LME for the public case, and (By, b1, B3,7) satisfy

B 2032/ .

o oT\2
_7_T+ 1 b, — 1 ; _7T+20}2,— (veT)" + 4oy
Tt = 2 2 Tt 3t_2_7T(Tft)’a’n YT = T .

2 2
o
yr v 203

Proof. Observe that Bgt%—kﬁ;;t% g 3”’5 . Hence, define I1; := B3;7;, which has ODE I, = H—Qg

oy
with initial condition ITy = 3 ¢y"" w2 = yFPub /9 where the variable 4% denotes our aux-

iliary parameter v introduced earlier, for this special public case. The solution to this ODE

is I, = [’W% — é] . Substitute II into 4, = —% to obtain 4, = % [’YF% — %]
-1
which implies v, = C,, + [ o — U%] . As v = yPP | we have C, = yP"P /2 and thus
Y
,7F7pub 2 t -1
Ve = + [ - = —1 : (S.13)
2 v g



'YF’ pub 2 T

~1
Moreover, yp = 7° = T5—+ SFpw 0—2} , which is equivalent to the quadratic % (7F ’pUb)2—
Y

(v°T + 20%) yFPuP + 20242 = 0. The quadratic on the LHS is convex and evaluates to
2027° > 0 at 4P = 0 and evaluates to — (v°)’T/2 < 0 at AP = 4° 50 there is a
unique solution in (0,~°) which in the forward system is yr as in the proposition statement.
Substituting this into (S.13) and returning to the forward system by replacing ¢ with 7' — ¢
yields 7; in the forward system. It is easy to verify that v, > 0 for all ¢.

We now characterize (S, 81, 53). In the forward system, 83 = II; /v, = [2 — %]*1
and By, = 1 — B3 Finally, using » = 0, the 8,-ODE reduces to Sy = kB3 /0%. Writing
Bor = k— j;T Bos ds, using the expressions above for 3 and v, and carrying out the integration
yields the stated solution for f,. O

Lemma S.3 (Closed-form solution: ox = +oo case, r = 0). For r = 0, the coordination

game has a unique LMFE for the ox = 400 case:

oy (v’ +r)?

205 (7 +1)% — (T = t)(v°)*r
ro% (10 + yr)°

o} (v +0)" — (T =) (7°)* 77

V(v + )0 — (T —1)(v°)*7r]
(v +y7)[20% (v° +91)? = (T = 1) (v°)*yr)

Bor = k[1 —In(y/y7)], ase = i

5175 = 5375 =

Y

,Yo + ,YT7 7t -
for allt € [0,T], where x; = 1 —:/7° and yr € (0,7°) is the unique solution in (0,7°) to
the cubic q(7) := T ()" + (y =7°) (v +7°)° 0% =0, and B =1 — B — fs.

Proof. We work with the backward system, where the a3-ODE is dg; = rag[1 — aie(2 — x¢)].

With r = 0, g must be constant and equal to its initial value azo = ﬁ Next, recall
that by Lemma B.1, x; = 1 — %, SO xo = 1 — ViONX and thus as = ag = vFNV—;JrvO for all

t € [0,T]. (The variable v"*"X now plays the role of y/*7** in the public case.) Note that the

. ag’y? . . o . FNX . ’YF’NXO'%/ . .
ODE 4, = =34+ given an initial value v**"* has solution ~; = - switchin
o ?
”Y S G

back to the forward system by replacing ¢t with 7" — ¢ yields the expression in the original

statement. The terminal condition 77 = ~° is equivalent to a cubic equation for y*NX:
q(,yF,NX> — ,YF,NXT (70)3 4 (VF,NX . ,yo) (,YF,NX + 70)2032/ —0. (S.14)

Note ¢ ('yF’NX) > 0 for Y% > 42 and ¢ (’yF’NX) < 0 for ¥F*NX <0, s0 all real roots must lie

in (0,7°). Now any root to the cubic must satisfy

T()? (P 4+49)?

o — ,YF,NX - Y ,VF,NX (8‘15)

The LHS of (S.15) is strictly increasing for v/*N% € (0,~°) while the RHS is strictly decreasing



in this interval, so ¢ has a unique real root. Returning to the 5; ODE, using ag = (1 x+ 3, we
have 3, = —%’”B“(ozg — f1;) in the backward system. This ODE can be solved by integration
after moving ﬁ;EOég — (1) to the LHS, and with algebra, one obtains (in the forward system)
the expression in the proposition. One then obtains f3; from these using f3; = asz — Bex:.
Finally, one calculates fy as By = k — ftT Bosds as in the public case, and the identity

By =1 — 1 — B3 was already established in the existence part of the proposition. O
Equipped with the previous two lemmata, we now prove the claim 53%13 > a3N7§. Using

the associated expressions from Lemmata S.2 and S.3, this is equivalent to

1 ~¥° ) ’ﬁubT NX
> = F:=7°|1-— < .

20y

Recalling the cubic equation that implicitly defines 42* in the proof of Lemma S.3, where
q crosses 0 from below, it suffices to show that ¢(§) = TH(v°)* + (¥ — v°)(¥ + 7°)%0% < 0.
Using the expression for ygub from Lemma S.2; one can show that
. TO) [/ o
0(9) = == 3 |(TV) + 20 = Ty*\[(T7°)? + 4oy |
1%

The expression in square brackets can be written as I—;”’ — /2y > 0 where z = (T7°)? > 0

and y = (T°)% + 40¢ > 0, and thus ¢(¥) < 0, concluding the proof that Bgféb > ajy-

S.1.5 Proof of Proposition 3 part (ii)

We now turn to the comparison of 3y coefficients for the ox = 0 and ox = 400 cases. Let
superscript pub and NX denote the ox = 0 and ox = +o00 cases, respectively. We make
use of the following lemma, which says that more information is transmitted to the receiver

when ox = +00 than when ox = 0.

Lemma S.4. Fizr =0 and 4°,0y > 0. Then for all T, v2"** > 4NX,

Proof. Recall that 4% is the unique positive root of the cubic equation ¢(v) = 0 defined in

Lemma S.3. At ¥} it is easy to deduce that ¢ must cross 0 from below, and hence to prove

the claim, it suffices to show that q(v{}ub) > 0. By direct calculation,

2 2
q(%};ub) = +% (2032, — 1/ (Ty°)? + 40@) (QT'yO + 2028 — 1/ (Ty°)2 + 40%,)

+ (v°)? (T’yo + 203 — 1/ (Ty°)? + 40%,) = (v°)*T'q2(S), where

9



2 2

¢(S) =1+25 — V11452 + S (25 VT 452) (2 125~ VI 452) and S := jf;”
We now show that ¢2(S) > 0 for all S > 0 (observe that ¢,(0) = 0). Let R(S) =1+ 25 —
V1 +452; it is straightforward to verify that R(0) = 0 and that for all S > 0, R'(S) > 0
and R(S) < 1. Moreover, the inverse of R is the function S : [0,1) — [0, 00) characterized
by S(R) := %. Hence, by change of variables, ¢2(S) > 0 for all S > 0 iff ¢g5(R) > 0,
where ¢3(R) := R — S(R)(1 — R)(R + 1)?. Now for R € [0,1), ¢g3(R) > 0 if and only if
S(R) = {4%((12:11;)) < (I_R)I(%RH)Q, if and only q4(R) := (2— R)(R+1)? < 4. It is straightforward
to verify that over the interval [0, 1], ¢4(R) attains its maximum value of 4 at R = 1, and

tracing our steps backwards this implies that g(v2"") > 0. ]

Recall from Lemmata S.2 and S.3 the closed-form expressions

b 2‘712/
o =k |1—In - (S.16)
208 —yp (T —1)
o0 =k [L—In (/7] (S.17)

where

VT + 203 —\/(°T)" + 4oy

pub S.18
T T ( )
NX 2 (.0 NX) 2
_'_
oK — oy (v + 1Y) (S.19)

2 9
o2 (70 + )T — (T —t) () 5%

and where YN € (0,7°) is the unique root in (0,7°) to the cubic ¢(y) = ~T (v°)° +
(v —7°) (v +7°)° 02 = 0 (which crosses 0 from below at v = 72X, as stated in the proof of
Lemma S.4).

Comparing (S.16) and (S.17), it suffices to show that for all t < T

0 2
202 S ot (v + %)
ub NX 2 2

20 —yp (T =) ™ of (v +0%) = (T=1) () ™

o2 o2

< T _pub > 5 .
012/ N §7T (T N t) 0}2/ - <70_:;NX> 7¥X<T - t)
T

In turn, it suffices to show that



which can be written as

ub NX
pp

p
2
2 7 T+ ) (5.20)

where pPUP 1= ~P™ /~0 € (0,1) and pNX := 43X /42 € (0,1). Note that pP* > pNX by Lemma
S.4. Moreover, dividing through the cubic ¢(7) by (7°)%0%, defining T = Z—zo, and changing
Y

variables, pN¥ is the unique value of p € (0,1) solving the cubic

q(T,p):==Tp— (1= p)(1+p)* =0,

where we make the dependence on T explicit. Again, q(T, -) crosses 0 from below at p = pNX.

Observe that p — 775 is strictly increasing on (0,1). Define p* := /2 —1 € (0,1) and

observe also that

o If pc [p*, 1), then § > (e

° pr € (O,p*), then g < ﬁ

We prove (S.20) via two cases: (i) pP" € [p*, 1) and (ii) pP** € (0, p*).
Case (i): We have

pub pub NX

p p

p
> >
2 = T+ T T+

where the first inequality follows from pP"® > p* and the second from the fact that 0 <
pNE < pPP < 1) so we are done.
Case (ii): We have

pub pub

p p

0< <
2 = L

_,pub__ /1 ub
and thus there is a unique value f(pP"*) = = 2" in the interval (0, pP) such that

ppub

PP f(pPP)

2 (I f(pr))>

pub pub NX .
B = (lf%ppug))g > ioxye, concluding

the proof. Since q(T, -) crosses 0 from below at pNX| it suffices to show that

We now show that pNX < f(pP"), which implies

0 < q(T, f(p™)). (S.21)
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for all T > 0 that induce p**® € (0, p*). Note that dividing (S.18) through by 7° and

T+27\~/ T2 44
T

simplifying the right hand side yields pP' = pPuP(T) = , which has inverse

T(pPeP) = %7 so we can establish (S.21) by equivalently showing that for all p €

(0, p*),

0 <q(T(p), f(p))

2

=% 52— 10p+4— (2 —6 4\/1—2]
TR p+4—(p°—6p+4) p

The outside factor is clearly positive, and by a change of variables z = /1 — 2p, so that

p= 1_2“"2, the expression in square brackets simplifies to

o(r) = 1012’

Note that each p € (0, p*) is the image of some = = /1 —2p in (p*, 1), and over the latter

domain, g(z) > 0, completing the proof.

S.1.6 Commitment Solution to Static Benchmark

Recall the static monetary policy game discussed in Section 2.

0+p

Proposition S.2. The commitment solution to the static game is a®(0) = =~.

Proof. Let p denote the density of N(u,~°) (the distribution of ), and let R(a,a,0) =

—(k+a—a)*— (a—0)? denote the sender’s ex post payoff function. The sender’s problem is

sup /R(&, a(0),0)p(0) do (S.22)

a(-),a

subject to the receiver playing a best response: a = E[a(0)] = [ a(0)p(8) db.

The Lagrangian for the sender’s problem is

Lla(),a,A) = / R(a, a(60), 0)p(6) df + \ [a— / a(0)p(0) d@} | (8.23)
For each 6, the first order condition with respect to a(8) is Ryp)p(8) — Ap(0) =0,

= A\ = Ra(g) = —4&(9) + 2k + 2a + 26. (8.24)

12



And the first order condition with respect to a is [ Rap(0)df + X = 0,

— A= /2(& +k—a(0)p0)dd =2(a+ k) — 2/@(9)p(0)d0. (S.25)
Using the constraint, this implies
A=2(a+k)—2a =2k (S.26)
Moreover, integrating (S.24) over all § (with density p) and using the constraint yields

A= —2a+ 2k + 2p, (8.27)

O+p
5 -

]

and thus @ = p. Finally, plugging A = 2k and @ = p into (S.24) gives the solution a®(f) =

S.2 Reputation Game (Section 4.2): Omitted Proofs

Throughout this section, we again use NX to refer to the case ocx = 400 where the X signal

is pure noise, and we use pub to refer to the ox = 0 case.

S.2.1 Proof of Proposition 5

To sign coefficients, we work with ODEs in backward form. Consider any LME. To see that
Bo = 0, just note that the terminal conditions imply £ = v19 = v3o = 0, and moreover,
(Bo, v1,v3) = (0,0,0) satisfy the system of ODEs for these three variables. These are the
unique solutions by the Picard-Lindel6f theorem.

Next, note that (7o, xo) € (0,7°)x(0,1). As in the proof of Theorem 1, define (s, ¥, Us) :
(B2/(1 = x),v67/(1 — x)%,vs7/(1 — X)); also, define 35 := 3 — 1. Using the initial values

Bio = —Ugfﬁ < 0, and 6270 = 5370 = Vg = Ugo = 0, it is tedious but straightforward to
Y . .

verify that 52,0 < 0, 5370 < 0, Ugo = 0 > 560, and g9 = 0 > 0Ugo. (See spm.nb on our web-
sites.) Hence, for all sufficiently small ¢ > 0, for all z € {f, 52,53,176,178}, we have x; < 0.
Define 7 := inf{t € (0,7] : z; = 0 for some = € {61,52,33,66,68}} (and 7 = oo if this set is
empty). Suppose by way of contradiction that 7 < T'. By continuity, z, = 0 for some x. We
derive a contradiction by arguing via the comparison theorem that for all ¢ € (0, 7] and all
x € {517B~2,B~3,176,6g}, x; < 0. Write each ODE in the form &, = f*(z,t), and define y = 0.
Consider any s € (0,7); by the definition of 7, each variable is strictly negative over (0, s,

so in particular, for each x, we have x4 < ys = 0. And by definition, &; — f*(zy,t) = 0 over

13



[0, T]. Moreover, for t € [s, 7],

. 203
e — 7 (i, t) = — QZtXt >0
Ox

~ 2 02 2~

B— [Py t) = a3t7t(‘7X521t _ Ut Xt) >0
0x0y

~ 1 2 ~

U — fﬁs (ye, t) = _’Yt( + 51tXt)2[U)§51t + Vgi X1 >0
Ox%y

- 1~ -
U — [y, t) = 55%%(25115 + B2) >0

U — [ (g, t) = —’Yt[Bm — 51t5~3t] > 0,

where we have used that as > 0 (since ago = > (0 and a3 does not change sign,

as shown in the proof of Theorem 1), that for all x € {1, B2, 53,0, Us} and all t € [0, 7],
x; < 0, and in the third line, that 1 + Biyx: > B3 + Buxe = as > 0. By the comparison
theorem, we have z; < y; = 0 for all ¢ € [s,7] and all z € {ﬁl,ﬁNg,Bg,%, Us}, contradicting
that x; = 0 for some such z. Hence, 7 = 0o, and we conclude that for all ¢ > 0 going
backward (t < T going forward), By < 0, B = far(1 — x¢) < 0, and By = By + 1 < 1, from
which it follows that (83, = asy — Bixe > asy > 0. Moreover, as, = B3 + Buxy < Ba < 1
for t € [0, 7). The remaining inequalities at time 7" (going forward) are immediate from the

terminal conditions.

S.2.2 Proof of Proposition 6

Assume throughout that r = 0 and ¢ < 0% /7°. We first characterize the unique equilibria
for the cases ox = 0 and ox = 400, and then we compare the sender’s payoffs.

Public Case ox =0

We look for an equilibrium of the form a; = Bo; + S1:M; + P30, where M; = M, is publicly
known, with value function V (0, m,t) = vo; + v1:0 + voym + v3:0% + vyym?* + vs50m.
The core (backward) system of ODEs is

(B()ta Blh 6315’ 'Vt) - (Oa _51156%{%2/0‘}2/7 51156%{%2/0‘}2/7 /6??7573/0-)2/)

with initial conditions Sy =0, 810 = —% <0,830=1and v =~ € (0,7°).
- - Y
Define ¢ := ¢y°/o% <1 and T := Tv°/c%.
We now show that there is a unique v € (0,+°) such that a (unique) solution to the IVP

14



exists and satisfies 77 = +°, and thus there exists a unique LME. Specifically, v/ = pPub4°,
where pP" is the unique root of the cubic gP"*(p) := —Tp*(1 —p) + p(1+T) —1 = 0; and
(Bot: Bues Bse) = (0, Brov™ /v, 1+ Bro(l =47 /7)) where v = U;ﬂﬁtﬁfﬁg) (It is easy to
verify that ¢g?"*(0) < 0 < gP"(1), and moreover, ¢ < 1 implies g*"(p) > 0 for all p € R, so

there is indeed a unique root of the cubic.)
Note that that §y = 0 is the unique solution to its ODE and initial condition. Now
Biy + Bs = 0, so By + B3 is constant, and

Bie + Bse = Pro+ B0 =1+ Bio = By =1+ Pio — Bt

Next, define II := ;v and observe that II = 0, so

By = 5107F
— Bu = by’ [ (S.28)
= Oy =14 Pio(1l — ’YF/%), (S.29)

where v, > v > 0 for all ¢ over the interval of existence, since v is nondecreasing.
Using (S.29), the ODE for v is 4y = [(1 + B10)y: — Bi07y'|?/0%. Integrating and using the

initial condition for 31y and 7y = 7 yields

oy +tp(v")?]
oy —tyF (= + o)’

Ve =

wherever this exists. The condition v = ~°, after writing v¥" = p°, is equivalent to the
cubic equation gP"®(p) = 0 stated above, completing the characterization of LME.
ox = +oo Case

We look for an equilibrium with a; = St + B1:M; + [3:0, where M; = ]Et[Mt], with value

function V (t,0,m) = vg; + v1:0 + voym + v3:0% + vyym? + vs@ml. The backward system is

_5%’7(1 - X)as

/80 - 0_32/
5o Biy(as — Bi)as
ﬁl - )
Oy

: BsBiyas
By = B

Oy
. 2,2
P)/t = fy 2 3

Oy

15



where x = x(7) =1 — v/~°, and with initial conditions

Yy F

= O = —
oo = 0: o oy + 1y x(yF)

< 07B30 = 17 and Yo = ’YF € (0770)'

Also note that &g = 0, so a3 = azg = & = and thus it suffices to solve the

7v-ODE with terminal condition v = 4° to pin down 4. (The remaining value function
coefficients are easily recovered as in the previous application.)

We show that there is one solution for each root p™* € (0,1) of the quintic ¢gN*(p) :=
Tp— (1= p)[1+ Up(1 — p)]?, where T := T~°/o2 and ¢ := 7°/o2. Such a root always
exists since ¢gN*(0) < 0 < ¢N¥(1), and hence an LME exists. In any LME, ~; = %,
where v = pN¥~° and with a3 = as being a constant as above. We then show that there
is a unique root in (0,1) when 1 < 1.

To establish these claims, consider the backward IVP indexed by % over its maximal

interval of existence. Notice first that By + 81 + 83 = 0, and so

e
oy + X ()

Bot + Bit + B3 = Boo + Bio + Bzo =1 —

Thus, as long as f; and f3 exist, [y will too, and since [y does not appear in any of the
other ODEs, we can ignore it from the analysis.

Now consider the subsystem

B = _51547(5; — B)
Oy
By = 53%’7547
Oy

and observe that since f19 < 0 and 39 = 1 > 0, the same inequalities hold in a neighborhood
of zero.

We claim that 83 and (; do not change signs. First, both cannot vanish at the same
time, as this would violate that a3, = @ > 0. Now suppose (3 is the first to do it, say at
time ¢; then for all s € [0, 1], 81p < 0 and by the comparison theorem, 53 > 0 for all s € [0, ¢],
a contradiction. Likewise, a contradiction obtains if 5, vanishes first. We therefore conclude
that f; is increasing while f3 is decreasing, and that they lie in [3;9,0] and [0, 1] as long as
they exist.

The existence of a solution to the IVP over [0,7] then reduces to the existence of a

solution to the v-ODE when this ODE is driven by &. As long as it exists, straightforward
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integration shows that
2

= JF—U?—z
oy — Y act
Imposing 77 = v° and using that & = 0% /[0 + 17" (1 —7F /7°)] = 1/[1 +Pp(1 — p)] yields
the quintic equation g™*(p) = 0 introduced earlier. (Note that when vy = +°, ~; is well
defined for all ¢ € [0,77].)
To show uniqueness for ¢ < 1, we prove that the derivative of g™ is positive at any point
in (0,1) that satisfies g""(p) = 0; thus, g™ can only cross zero once, and hence, it does so

from below. It is easy to verify that

(") (p) =T + [1+Pp(1 — p)]* = 2(1 — p)(1 — 2p)[1 + Pp(1 — p)].

2 _ [1+¢p(1—p))?

At a crossing point, however, T + 1+ vp(1 — p)F = =R, and so
(6" () = {1+ Fp(1 = p) {1+ DolL = p) = 20p(1 = p)(1 ~ 20)}
~ ~1
> 2+ o= g {10207} >0

where we have used that 0 <) < 1, 0 < p(1 — p) < 1/4, and |1 — 2p| < 1.

Payoff Comparisons

The following lemma will be useful for comparing the sender’s payoffs.
Lemma S.5. If ¢ € (0,1), then there is more learning in the public case for all T > 0.

Proof. Let p* = ~%/~° € (0,1), where ~4 is the terminal value of v in the BVP of case
x € {pub, NX}. When ¥ e (0, 1), these values are the unique roots of

0=g"*(p) = pT' = (1= p)[1+Pp(1 = p)I> = p(1 +T) = 1 = hp(1 = p)*[2+ ¢p(1 — p)]
0=g""(p) = p(1+T) =1 —¢Tp*(1 - p),

respectively. In particular, observe that p* > 1/(1 —|—T), x € {pub, NX}. Our goal is to show
ppub < pNX‘
Now, using that pP™(1 4+ T) — 1 = T (p*")2(1 — pP"*), we get that

v(L—p™)

NX( puby _
g " (p™) =

(T2 )2 = (1= ™) 2T + p (14 T) — 1]}
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where @ > 0. Thus, letting
Qlp) :=Tp* — (1= p)2pT + p(A +T) — 1] = p2(T* + 3T + 1) — p(3T +2) + 1,

it suffices to show that Q(pP™®) < 0, as ¢g"*(p) < 0 if and only if p < pNX

(3—V5)T+2 _ (3+VE)T+2
2(T2+3T+1) T 2(T243T+1)°
< py. Consequently, it suffices to show that gP"*(p,) > 0: this ensures that

Observe that the roots of () are given by p_ = and

that p_ < —=
ppub

and p

1+T

< p4, and since pPP > 141T > p_, this implies that Q(pP*?) < 0.

Straightforward algebraic manipulation yields that gP**(p,) > 0 if and only if

G(T, ) =41+ D)[(B+ VBT 4+ 2|[T%+ 3T + 1] — 8[T% + 3T + 1]
—T?[(34 V5T + 22[2T + (3 — V/5)] > 0.

A lower bound on the left hand side is found by setting ¢» = 1, and Q(T, 1) can be written
as TZaZTz where all the a; > 0. Hence, §(T, 1;) > 0 whenever T > 0 and ¢ € (0, 1],

1=

concludlng the proof. O

We now leverage Lemma S.5 to compare ex ante payoffs. To simplify expressions, we
again rescale payoffs to remove the outside scalar factor of % Let V* denote the ex ante

payoff to the politician in the case z € {pub, NX}. First,

T
Ve = {— / (a; — 0)2dt — p M2
0
T
= —/ Eo [(B1eM, + [B3 — 1]0)*] dt — ¥ (u* +7° — 1)
0
T
= _/O (B3 — 1)*° + BE(v° — 7)) + 2Bu(Bse — 1)(7° — )] dt — dhos- (1 — pP®).

Using the solutions for the coefficients and 7, in terms of v¥" and carrying out the simplifi-

cations, we obtain VP> = V/Pub(pPub) " where

VO(p) = 0} {001 - p) + U001 - ) + ]+1n(1T_pp)}-

In the ox = +00 case, note that Eg[M?] = Eo[(x:0 + (1 — x¢)p)?] = Eo[x260%] = x?9°.
Hence, Eo[M?] = Eo[(M; — My)?] + Eo[M?] = 72 + x37° = xen + X37°-
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Using a; = Bor + B1: My + P30 = abl, we now calculate

T
VX =, {— / (ar — 0)*dt — Y (xyr + X%’YO):| = —(1—a3)>y°T — ¥xr(vr + x17°)-
0

Expressing xr = 1 — v7/7°, 77 and a3 in terms of v = 47, we have VI = VNX(pNX)

where
VI (p) == 0% {—1;2/)(1 —p)’ - 1&(1 - P)} :

We now prove that for r = 0 and 1; € (0,1), the sender’s ex ante payoff is higher for
ox = +oo than for ox = 0. To do so, we show that (i) VP(pPuP) < VNX(pPub) and
(i) VNX(p) is increasing for p > pP". Since pP"* < pNX by Lemma S.5, it follows that
ppub(ppuby < /N (NX),

Toward establishing (i), define V(p) := VP*™(p) — VN¥(p); we have

Vi) = o3 { o1~ ¢<1—p>+1]+1n(1Tpp) i )

and our first goal is to show V(pP"?) < 0. Since In(z) < z — 1 for = > 0, we have

V(p) <oy {Mﬁ[—@(l —p)+ 1]+ [1;_[)/) _1

+¢2p<1—p>3} _ T—’Q;W ),

where Vy(p) = T?p?[1 — (1 — p)] + 1 — p(1 + T) + Tp?p*(1 — p)*, and so it suffices to

show V5(pP™) < 0. Now the equation gP*™(pP"P) = 0 is equivalent to ¢) = Tp(gl(YTpp | ppput
_ lp(1+7)

—1]3
T | j=ppub, Which is

using this to eliminate and simplifying, we obtain V,(pP"?) =

strictly negative as pP'? > establishing claim (i).

1+ T
Toward claim (ii), differentiate

d . . y
a5V o) = b { =301 = ) (1= )+ 0 = 030 {91 = ) (1= 4p) 1.
The expression in braces is positive iff h(p) := (1 — p)?(1 —4p) < i Now for p € [0, 1], h(p)
attains its maximum value of 1 at p = 0. Hence, if ¥ < 1, the expression is positive for all
p € (0,1) and we conclude that VN%(p) is increasing for all p > pP.

Combining parts (i) and (ii) yields VPP (pPuP) < VNX(ppub) < YVNX(pNXY a9 desired.
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S.3 [Existence of Linear Markov Equilibria (Section 5):
Omitted Proofs

S.3.1 Auxiliary Results

In this section we prove Lemma C.3 from the main text.

Proof of Lemma C.3. Let (x})ie0,r denote the solution to IVP(y') from the statement of

Lemma C.3. For each component j € {1,...,n}, the triangle inequality implies

t
laly — 2] < oy () — w; ()] + / Fy(ah, ) — Fy(a2, o2)|ds.
0

The mean value theorem and the facts that F} is of class C' and X and Y are compact then
yield that there exists ¢/ € R, such that for all y',9% € Y,

t t
2y — 23] < () — wy ()] + ¢, / 1! = 12lleds + ¢, / 2! — 22|ds.
0 0

Letting ¢ = max{c¢; : j = 1,...,n}, we obtain

t t
Hflfi—@"?llooéI\W(yé)—W(yS)HooJrC/ ||y§—y§\|oods+c/ [lzg — 23 loods.
0 0

Since ¢ > 0 and ¢ — ||w(yg) — w(K)|leo + ¢ [y [y} — y2||eeds is non-decreasing, Gronwall’s

inequality (Teschl, 2012, Lemma 2.7) implies that
t
ot = ol < e (11stsd) = Dl + [ st = 2l
0

< T <<|lw(yé) —w(y)llee + T sup Iy — yf"oo)
te[0,T]

= kallw(yn) — w(¥)lloo + k2 sup [y — 1] |oc-

s€[0,7

S.3.2 Terminal Conditions (¢ # 0)

In this section, we provide a lemma characterizing terminal conditions, which we will use to

prove Corollary C.2 in the next section.
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Suppose the sender receives a terminal payoff of the form ¥ (ar) = ¥iar + %@hd%, where
11,19 are constants. (An intercept is strategically irrelevant.) The following result gives
sufficient conditions for the terminal game parameterized by (v7, xr) to have a unique equi-
librium, continuously differentiable in those parameters, and it provides expressions for the
terminal conditions for strategy coefficients (up to ar, which is defined implicitly). The
bound Cy/v° on the curvature, characterized in the proof of the lemma, ensures uniqueness

by limiting strategic complementarities. Note that there are no restrictions on ;.

Lemma S.6. Under Assumptions 1 and 2, there exists Cy, € (—o0,0)U{—00} independent of
(r,7°) such that for all (11, 12) € R x (Cy/~°,0] there exists ET(’YTvXT) continuously differ-
entiable over [0,7°] x [0, 1] that, together with the receiver’s myopic best reply, characterizes

the unique Bayes Nash equilibrium of the terminal game parameterized by (vyr, xr):

0% [(Uao + Uaatlian) + (V1 + Uaoth2) (ag + Gaaiar )Ty /0%]

for = 03 (1 = Uaatiaa) — Y2 yr037laa(la + Taatisr) 50
Bir = (lap + Qaa0isr) (Uaa + ¥o(lap + Gaatsr)sryr/0Y ) (8:31)
By = 0% liqa(las +2ﬁa&a3T)(1A — xr) (taa + 1@2043T7T(@f10 + flaatisr) /03)” (S.32)

03 (1 — Uaatiaa) — Y2y703700a(lag + Uaaisr)
B3r = Uap- <S'33)
Moreover, asr(yr,xr) = Bir(vr, xT)XT + B3r(Yr, XT) has the same sign as uqg, and

therefore the same sign as of'. The value of Cy, depends on the parameter values as follows:
o [flgaliqg = 0, then Cy = —o0.

2 3 _ ~dl A
o If iigatiap # 0, then C,y = —22x m‘“{;’é Uoatlaa}

Proof. We first derive the system of equations that characterize any Bayes Nash equilibrium
of the static game at time 7. Given that (i) the receiver plays a; = do; + 51 M, + 0o L,
where do; = U + UaaBot, 01t = Uag + Uaa (B3t + Brexe) and dg = taa[Bor + Bre(1 — x¢)], and (ii)
M, = Et[Mt], all t € [0, T], imposing that the sender’s strategy a; = Bo; + B1: M+ Bor L + 5340
satisfies the first-order condition on the right hand side of the HJB equation for times ¢ €

[0,T"), we obtain the following equations:

VeQuzpUop = —012/ [ta0 + Uaalao — (1 — UaaTiaa)Bot) (S.34)
2
o . .
Vi Q3L Vsp = _%[uadude + UaaUaatst — Pt (S.35)
Y3t Ut = —U%[Uae - 5315] (8-36)
VearVor = — 0y [UaatiaaB1e(1 — Xt) — Bt (1 — Ugatiaa)]- (5.37)
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By continuity (wrt time) of the strategy, learning, and value function coefficients, (S.34)-
(S.37) also hold at time ¢ = T.

The sender’s time-T' expectation of the terminal payoff is

Er[y(ar)] = ¥1[dor + S10 My + Sor L] + %[%T + 617 My + Sor Lr)* + %5%T’YTXT>

from which we obtain

vor = [t1 + V2(Uao + UaaBor)] (tlag + Uaaisr) (S.38)
UsT = 72(11&9 + Qg 7))’ (S.39)
Urr = 0 (840)
Vor = Yolaa|Bor + Prr(1 — x1)](Tas + Uaaisr)- (S.41)
For later use in our boundary value problem, we also note the terminal conditions
wir = 203 = L2 e + fua(1 — o)) (542)
vsT = 0. (843)

Evaluating (S.34)-(S.37) at time ¢ = T and equating these with (yrasr) times (S.38)-
(S.41), respectively, we obtain

—0% (a0 + UaaTlao — (1 — UgaTlaa) Bor] = Yrosr[W1 + Wa(tiao + taafor)] (Tag + Taaorsr)

(S.44)
2
0 ~ ~ ~ ~
—%[Uaauae + UaaUgatsT — Prr| = ?2’7T053T(u[16 + Ugacrsr )? (S.45)
—0'32/ [uag — BST] = 0 (846)

—05 [UaalaaBir(1 — X1) — Bor (1 — Uaallan)] = Voyrasritea]Bor + Bir(1 — X7)](ap + Taaciar).
(S.47)

First, we characterize agr, and then we show that (Sor, 17, far, B37) are given by (S.30)-
(S.33).
Multiplying (S.45) through by 2xr, substituting Sirxr = asr — fsr = aszr — Ugg, and

rearranging, (S.45) becomes

03 [ta + UaalaoxT — 37(1 — UaaUaaXT)] + VoyrXT 3T (Tan + ﬁada?)T)i = 0. (5.48)

(.

~~

=:f(azr,y7,XT)
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We construct Cy, such that if ¢ € (Cy/~°,0], there exists a unique real asr continuous
in (v, xr) over [0,7°] x [0, 1] that solves (S.48) and has the same sign as u,g; from this, we
construct f; solving (S.45) and in turn, Sy and (s solving (S.44) and (S.47), respectively, all
continuously differentiable in (yr, x71).

If v =0, f(-,yr, xr) is linear and has unique root asr(yr, x7) := m—;ﬁfgf, which is
well-defined and has the same sign as uy for all (yr, x7) € [0,7°] x [0, 1] by Assumption 2.
And clearly, it is continuous in (77, xr) over this domain.

Hence, for the remainder of the proof, assume 1, < 0. We consider two cases: U,z =

0 and Uz # 0. If Gga = 0, f(-,y7, xr) is linear and has unique root asp(vyr, xr) =

02 (ugo+uaaliaoXT) 02 (uagptuaatiaoxr)
0% (1—ugqaliaaXT)—V2yrXTUZy 0% —th2yrXTl2,
and is continuous in (yr, xr) over [0,7°] x [0,1]. Specifically, the numerator of the expres-

which is well-defined, has the same sign as g,

sion defining asr has the same sign as uq by Assumption 2, and ¥y < 0 ensures that the
denominator is positive. Thus, for #,, = 0, the lemma holds with C}, = —oo, provided that
the remaining variables are uniquely determined and continuously differentiable; we perform
this step for both cases 1,5 = 0 and 1,4 # 0 after solving for asr for the latter.

Now consider ¥, < 0 and w4z # 0. If x7 = 0, then for all v > 0, f(-,yr, xr) is linear
with intercept o%uq and unique root azr(yr,0) := Ugp.

Next, suppose xr € (0,1], 1y < 0, and 445 # 0. We establish a condition such that for
all (vr, xr) € [0,7°] x (0,1], f(-,yr, xr) is strictly decreasing, and thus it has exactly one
real root. Clearly this holds for v = 0. If 4 > 0, then f(-, v, x7) is cubic, and it satisfies
lima,, 400 f (@37, yr, XT) = —00 and limg,, o f(asr, yr, X7) = +00. We calculate

0 . . . . .
flasr, v, X1) = —08-(1 — UgaliaaxT) + YoyrXr(Uag + Gaacsr)(Tag + 3taaasr), (S.49)

8a3T

which is concave and quadratic in asp. The first term on the right hand side of (S.49) is

negative by Assumption 2. The maximum value of the right hand side of (S.49), attained at

agr = —5e22 is =03 (1 — UaatiaaXr) — §iigg¥2yrXr. Thus
0 . . 1.
gf(@im Y1, XT) < —012/ mln{l, 1- ua&uad} - g“gel/’ﬂo- (S~50)
3

Define Cy = —o0 if tgp = 0 (or if 4,5 = 0 as noted earlier) and Cy, := _37% min{;’;_u“&ﬁ“a} <0
if Gatia0 # 0. By construction, for all ¢ € (Cy/~°,0] and all (yr,xr) € [0(1,070] x (0,1],
f(vr, xr) is strictly decreasing and has a unique real root which we denote agr(yr, x7)-
Since f(0,vr, XT) = 0&[uap + UaaliaoxT] has the same sign as wu,y by Assumption 2 and
f(vr, xr) is decreasing, asr(vyr, xr) has the same sign as .

Having characterized asr(yr, xr) # 0 on [0,7°] x [0,1] for (¢1,12) € R x (Cy/7°,0)
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for both cases U, = 0 and 1., # 0, observe that (yr, xr) — asr(yr, xr) is continuously
differentiable by the implicit function theorem.

It is immediate from (S.46) that in any solution, Ss37 = u.g; trivially, this is continuously
differentiable in (y7, x7). Further, given asr(vr, xr) as above, (S.45) uniquely determines
Bir(yr, xr) continuously differentiable. We now show there exist Sor and Sor solving (S.44)
and (S.47), respectively, also continuously differentiable in (v, xr). These equations are

linear (and uncoupled) in Sy and Sar, respectively. Rearranging terms in (S.47) yields

Bar (0% (1 = Uaaliaa) — Vo yrasriiaa(las + Uaatsr)]
TV

=:C(yr,xT)

= Taa 17 (1 — X7) [hoyrasr(tias + Gaasr) + 03 tiag)-

Since collecting Byr terms on the left side of (S.44) yields the same coefficient C(vr, x1),
to establish existence it suffices to show that C(yr, xr) > 0.

If azriies(tiag + Ueacsr) > 0, we are done, since by Assumption 2, 02 (1 — uaatles) > 0,
and by assumption, 1y < 0 and vy > 0. Suppose now that asrtiea(tag + Uaacsr) < 0.
Note that this implies 4, # 0 and tap # 0, and by the definition of Cy, ¥y > Cy/7° =

. 30?, min{l,1—ugs0aa}

S . Thus, we have
Uao

30'32/ min{l, 1— ua@ﬁa@}
~9 o
Uz
2
> 72 mi 1.1 N Oy . 1.1 N N ~ ~
> oy min{1, 1 — ugaea} + 2 min{1, I — Uaaliaa } | @37Uaa(tag + Ugatisr)
a0

O(WT, Xr) > 05 (1 — Ugalias) — [ } YrasrUaq (Uap + UaaCisT)

o2 min{l,1 — wuatlas} . . .
_ 7y ming PER o [429 + Bosrtiaa(tag + taacvar)]
ad

2 . " 2
oy min{1, 1 — usataa}t [ . )

= Uap + 5037 Uaq
Uz 2

>0

Y

where the second line uses that yr < 7 and agrtieg (tag+taacsr) < 0, and the fourth line uses
that asries # 0 which implies (aspiiqs)? > 0. Thus CN’(’yT, xr) > 0, so given asr, (S.44) and
(S.47) have unique solutions Sy and fBer which by inspection are continuously differentiable
over the domain [0,+°] x [0, 1]. This concludes the proof of the lemma statement.

For later use in our existence theorem, we note the following facts about the solution
described above. First, Bor carries a factor of 1 — y7 and (therefore) ver carries (1 — x7)?,
while vgr = 0. Hence, it is easy to perform a change of variables (BZT, Ver, UsT) = (Bor/(1 —

x7), 7rver/ (1 — x1)%, Yrvsr/(1 — x7)) as in the main text, all continuously differentiable in
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(yr, xr) and thus bounded over the compact domain [0,~°] x [0, 1]. Second, after this change
of variables, there exist nondecreasing functions 7,0 : R, — R, with n(7°),0(7°) — 0 as
~v° — 0 such that for all (y7, xr) € [0,7°] % [0,1] and i € {6,8}, ||5r(v, x1) — 8™ (x7)]]00 <
n(~°) and |U;r(vr, x1)| < ©(7°). To see this, observe that the right hand sides of (S.44)-
(S.47) converge uniformly to 0 as 77 — 0, and thus fp(vr, -) converges uniformly to 5™ (-)
as yr — 0. Similarly, it is easy to see that Ogr(vyr,-) — 0 uniformly as vy — 0, while
Uy is identically zero. Setting 1(7°) := sup{||Fr(vr, x7) — B (x7)ll : (77, x7) € [0,7°] X
0,1]} and 9(7°) := sup{|Per(yr, xX1)| : (7, x7) € [0,7°] X [0,1]}, we have that  and v
are nondecreasing by construction, and they satisfy the inequalities and limit properties as

claimed. 0

S.3.3 Proof of Corollary C.2

We follow the same steps from before except for a few modifications, which we outline here.
First, we note that the terminal values (87, Bor, By, Ters Ogr) and asy = Birxr + B3r # 0
are now implicit C! functions of (yr, xr) over [0,7°] x [0, 1] given by Lemma S.6.2

In the ‘Centering’ step, we replace the initial conditions for the backward ODEs of
(gc,ﬁﬁ,ﬁg) with the difference (ﬂlT,BgT,BgT,%T,ﬁgT) — (5{”,55",%”,0,0) (suppressing de-
pendence on (yr, x7)), and observe that the ODEs themselves do not change. Likewise, in
the ‘Auxiliary variable’ step, we modify the initial condition for the (backward) a-ODE
to be ap = asr(7,x) # 0 for all (v, x) € [0,7°] x [0,1]. Moreover, by the same comparison
argument as before, & does not change sign; but since asr and of' always have the same
sign from Lemma S.6, it follows again that &/a%' > 0 from which we can find an interval of
existence independent of r > 0. We also note that the argument showing that the solution
to the boundary value problem satisfies a3 = & # 0 also remains unchanged.

Step 1 of the proof of Theorem C.1 is only modified in that the parameter used in our
domain A(-) will be p+ K +n(7°) instead of p+ K, to account for nonzero initial conditions
for the centered variables. We elaborate on this parameter when discussing Step 3 below.

In Step 2 of the proof of Theorem C.1, we write for i € {1,2,3} and j € {4,5}

t —r [f Gy gy
[biy — bio| = / e foag e Yshi(bs — bo + bg, X)ds
0
t L A
|bj: — bjo| = / e Js (r+vuRj(bu,xu))du%hj(bs — by + by, Xs)ds| .
0

Now from the end of the proof of Lemma S.6, there exist nondecreasing functions 7(+°)

2Note that g7 = 0 as before, but ¥z can be nonzero.
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and o(v°) with n(7°),9(7°) — 0 as 7> — 0 such that for all i € {1,2,3}, |by| < n(7°)
and for j € {4,5}, |bjo] < ©9(7°). Hence, when the bound |b;s — bj| < K holds for
all i € {1,...,5}, we can bound |h;(bs — by + bo, xs)| < hi(K + n(7°), K + v(7°)) for
scalars h;(K +1(v°), K +v(7°)) which are increasing in both arguments. Define T'(7°; K) :=

minjeqy,... 5} WOhi(KM(g)wa(wo)). By repeating the arguments used in the proof of Lemma C.2,
for all T < T(y°; K), a solution to the modified version of (IVP"4())) exists and satisfies
by — big| < K for all ¢t € [0,T].

In Step 3, g is defined the same way as before, except now w as in Lemma C.3 is the vector

of new initial values for (¢, 06, Us). Since w is continuous, ¢ remains continuous. Moreover,

q(A\) = q(\) — (w1 (A7), w3(Ar)) + (Wi (A7), w3(AT))
= (b1(:;A), b3(:; A)) — (wi(Ar), ws(Ar) + (Bi(Ay), Bs(A)) + (wi(Ar), ws(Ar)),

/ N N /

Vv — Vv
[[loo <K oo <p [[lloc<n(7°)

and thus the triangle inequality yields ||g(A)||ee < K + p+ 1(7°).

Step 4 goes through almost unchanged, except that (IVP™!(¢()\))) now takes as its input
q(\), bounded by K + p+n(7°) as above. Applying this bound to |Ay;| and |Ayl, it follows
that the solution A to (IVP™(¢()))) lies in A(K + p+n(7°)). By the same arguments as in
the original Step 4, ¢ — A(q) is continuous, and the function g defined by g(A) = A(¢g()\)) is
a continuous self-map on A(K + p + n(7°)). Schauder’s Fixed Point Theorem then applies
exactly as in Step 5. To conclude, we again define T'(7°) by maximizing 7'(7°; K) over K > 0,

and we note that T'(7°) € Q(1/7°), and it can be written in the form Cr/~°.

S.3.4 Proof of Proposition 1: ([, v3) System

When u,5 = tlag = Yaa = 0, using that 81 = By = vg = vg = 0, the ODEs for 3y and v3 are

gy Vs ezt (Uag + ﬁada3t)2’yt2xt a3V (Gag + Uaaest) (ap(Bor — Uao) + UaoUap)
BOt—T (BOt_UaO)_ 5 9 — 5
Uqp O'XO'Y(]_ — Xt) UapO2
) Urg + U,z 2
U3y = U3 + v ({ap + faa) .
I — Xt

The terminal condition for vz is vsy = 0, so vs = 0 is the unique solution. It is easy to see

that after setting v3; = 0 in the ODE for [y, there is no dependence on ox and Y.
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S.4 Extension: Both Players Affect X and Y

In this section, we generalize several results from the baseline model to allow both players’

actions to (additively) enter both signals:

dX, = (4, +va,)dt + oxdZ;, v € [0,1] (S.51)
dY, = (a; + Day)dt + oydZ) v eo,1]. (S.52)

Subsection S.4.1 extends our results from Section 3 in the paper. First, Lemma S.7
establishes a generalized version of our representation result (Lemma 1 in the paper). Second,
Lemma S.8, stated for the more general signal structure above, verifies that the public state
corresponds to the belief about 6 using only the public information. Third, Lemma S.9
presents laws of motion for (M, L) for arbitrary strategies for our sender. These results
enable us to set up a best-response problem for our sender that is analogous to the one
from Section 3.3 in the paper. Subsequently, Lemma S.10 establishes that 0 < v < ~° and
0 < x < 1 (in particular, confirming that the law of motion of L is always well-defined), and
that the ODE system for (v, x) admits a unique solution (which confirms that the (v, x)
delivered by our fixed-point approach indeed corresponds to the variances of the players’
learning). We conclude this part by showing a one-to-one mapping between x and ~ for this
general case (Proposition S.3), analogous to Proposition 9 in the paper.

Finally, in Subsection S.4.2 we leverage these results and our fixed-point method to
provide an existence result analogous to Theorem 1 but for our trading game from Section

4.3. Subsection S.4.4 contains the proof of Proposition 7 in the paper.

S.4.1 Technical Results

Lemma S.7. Suppose that (X,Y) is driven by (S.51)—~(S.52) and the receiver believes that
(10)—i.e., My = x40 + (1 — x¢) Ly, with x a deterministic function—nholds, where (Ly)ejo.r) 5
a process that depends only on the public information.® Then (10) holds at all times if and
only if Ly = E[0|FX] under (S.51)~(S.52), x¢ = Ee[(M; — M,)?| /v, and

Y = _%2(5& + 51tXt)227 Yo =7°, (S.53)
xt = V(B + 51tXt)22(1 — Xt) — % (V[Ba + Buxe) + 51tXt)2/U§(7 Xo =0, (S.54)
dLy = (lor + b Le)dt + Bid Xy, Lo = p, (S.55)

where 3 := 12 /0% + 1/0% and (Lo, l14, By) are deterministic and given in (S.72)-(S.74).

3Formally, (L¢)tejo,r) can be any square-integrable process progressively measurable w.r.t. (FX )telo,1]-

27



Proof. Let L in (10) denote a square-integrable process that is progressively measurable with
respect to (F;¥)seo,r7. Inserting (10) into (8) yields a; = auy + cap Ly + cv3,0 which the receiver
thinks drives X and Y, where ap, = Sor, oy = Bor + S1e(1 — i), and agy = Bs¢ + Buexe

The receiver’s filtering problem is then conditionally Gaussian. Specifically, define

A~

dXt = dXt — [dt + V(Ckgt + OéQtLt)]dt = V()égtedt + O'Xng(
dY, = dY; — [ao + oL, + vag)dt = asfdt + oydZ)

which are in the receiver’s information set, and where the last equalities hold from his
perspective. By Theorems 12.6 and 12.7 in Liptser and Shiryaev (1977), his posterior belief

is Gaussian with mean M, and variance 71¢ (simply ; in the main body) that evolve as

VOéS;’Ylt [dXt _ V&gtMtdt] i Oé3t;ht

Ox Oy

dM, = [df/t — OégtMtdt] and 7y = —v5,a5,%,  (S.56)
with ¥ := v?/0% +1/0%. (These expressions still hold after deviations, which go undetected.)

The sender can affect ]\th via her choice of actions. Indeed, using that dXt =v(ag — g —
g Ly)dt + oxdZX and dY; = (a; — oy — o Ly)dt + oydZ) from her standpoint,

AM;, = (ko + Kuas 4 ko My)dt + BXdZX + BY dZ), where (S.57)
vo 6
R1it = Oé3t’71t2, Rot = —/‘ilt[OéOt + CYQtLt]v Rot = —Q3tR1y, BtX = ;t%tv BtY = ?;%t-(s-58)
X Y

On the other hand, since the sender always thinks that the receiver is on path, the public
signal evolves, from her perspective, as dX; = (va; + do; + Sy Mydt + Soi Ly )dt + oxdZ.
Because the dynamics of M and X have drifts that are affine in M—with intercepts and
slopes that are in the sender’s information set—and deterministic volatilities, the pair (]\7[ , X)
is conditionally Gaussian. Thus, by the filtering equations in Theorem 12.7 in Liptser and

Shiryaev (1977), M, := E,[M,] and o := E,[(M, — M,)?] satisfy

ox B 4+ va:01
2

th == (F&(]t + R1tQ + liQtMt)dt—F [dXt — (VCLt + (5015 + 51tMt + 52tLt)dt](S59)

=E:[(kot+r1tat+ros My)dt]
. 2
Yoo = 2Raar + (BY)? + (B))? — (B +aid1e/ox)” (5.60)

with dZ; := [dX; — (va; + S0t + 01: My + 91 Ly)dt] /o x a Brownian motion from the sender’s

standpoint.? Critically, observe that since (S.59) is linear, one can solve for M; as an explicit

4Theorem 12.7 in Liptser and Shiryaev (1977) is stated for actions that depend on (8, X) exclusively, but
it also applies to those that condition on past play (i.e., on M). Indeed, from (S.57), M; = MtT + A; where
M = M[zX,2Y;s <t] and A, = fot el r2uduy) q ds. Applying the theorem to (M, X; — fot vasds)eo,1,
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function of past actions (as)s<; and past realizations of the public history (Xj)s<.
Inserting a; = Bos + P1eMy + Bor Ly + 530 in (S.59) and collecting terms yields

th = ["%Ot + /%ltMt + l%QtLt + /%3t9]dt + Btht, where (861)

R va )

Kot = auzy1e5(Bor — vor) — SWIZZ Tt [V Bot + 0ot (5.62)
X

. vo + o0

Rit = a3t'71t2(/61t - 043t> Bt%; T2t 1t[ Blt + 51t] (8-63)
X

L vagyie + 26014

Rot = auzgy1e5(Bar — Qrap) — 2 (Vo + 0] (S.64)
X

finy — |:053t;}/1t _ V72t51t] By, B, — VO3t ;‘ Y201 (S.65)

Oy UX Ox

Let R(t,s) = exp(’ Arudu). Since My = 1, we have

t t t
A@:R@mﬂ+g/R@g@ﬂyﬁ/R@@mm+@¢¢k+/fw@mwxy
0 0 0

As in the main body, imposing equality with (10) yields the equations

R(t,0)u+ [) R(t, s)[fos + fnsLslds + [y R(t,s)BydX,
L—x:

t
Xt = / R(t, s)kssds and Ly = . (5.66)
0

The validity of the construction boils down to finding a solution to the previously stated

equation for x that takes values in [0, 1). Indeed, when this is the case, it is easy to see that
st = {Lt["%lt —|— f%Qt + I%gt]dt —+ I%gtdt —|— Etht}/(]_ — Xt)7 (867)

from which it is easy to conclude that L is a (linear) function of X as conjectured.
We will find a solution to the y-equation that is C! with values in [0,1). Differentiating
fo (t, $)kssds then yields an ODE for x as below that is coupled with v, and 7s:

Vit = —’Y%t(ﬂ?,t + 517&)(::)22 (S.68)
Yor = — 27271t (B3t + Buexe)*S + Vi (Bae + Biexe) T (5.69)
— (vy1e(Bse + Puxe) + '72156115)2 /0'?(
+ 1-
Xt = 71t(@3t 51tXt) ( Xt) (S.?O)

— (W[Bst + Brexe] + 1exe) (wyie(Bse + Buxa) + Y2u01e) /o -

yields a posterior mean M, and variance vgt for M' such that M + A, = M, as in (S.59) and 9 = fy;t.
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The identity x = v2/71 € [0, 1) can be established by the same steps as in the baseline model.
Setting v = x71 in the third ODE, and writing v for =, the first and third ODEs become
(S.53)(S.54). Using the expressions that define (&, B) yields that (S.67) becomes

ALy = (o + 1, L) dt + Byd X, (S.71)

where

Ye(vBot + dor) (Yase + Xi61¢)

lot = — o2 (1= ) (S.72)
 Ye[v(Bu A+ Bar + Bar) 4 01y + S (vars 4 xi1e)
o% (1 —xt)

VoY + YeXeOit

B, —
' o%x (1 —xu)

(S.74)

That L, coincides with E[f|F;¥] is proved in Lemma S.8 below. Note that by setting v = 0
in (S.71)-(S.74), we recover the law of motion for L, (A.10), in the main paper. O

Lemma S.8 (State L as a Public Belief). The process L is the belief about 6 held by an

0 L
outsider who observes only X. Moreover, (M) |FX ~ N(MPet vewt) where MP™ = ( t)

t Lt
Yt VXt
and 7OUt — [ 1-x¢+ 1-xz
t VEXt VXt
1-xt 1-xt

Proof. The outsider jointly filters the state v, = (0, M,)’. For the evolution of the state and
the signal, we adopt notation from Section 12.3 in Liptser and Shiryaev (1977). From the
outsider’s perspective, both players (and in particular player 2) are on the equilibrium path,

and thus the outsider believes that v; evolves as

dvy = ay(t, X)vedt + by (t, X)dW(t) + ba(t, X)dWs(t),

0 0 0 0 0
where ay (t, X) = <a2 N > a2 ~ E) ) bl(t7 X) = (O Oégt’Yt) ) b2(t7 X) = (l/a3t'7t> )
3t Tt A3 oy

oy ox

z

Wii(t), ZY and ZX are mutually independent. The signal is

Wia(t
Wi(t) = ( u( )> and Wy(t) := Z7X, where W, (t) is a standard Brownian motion and

dXI?Ut = dXt — [50t —f- (SgtLt + V(O./Ot —f- OéQtLt>]dt = Al (t, X)Ut —f- Bl (t, X)Wl (t) —f- Bg(t, X)Wg(t),

where A;(t, X) := (VOégt 5”), Bi(t,X) := (O 0) and By(t, X) = oy.
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out out
Y21 Vi22

we have from the standard filtering equations of Liptser and Shiryaev (1977, Theorem 12.7)

Mout ,7011,75 ,youg
: out __ 1 out __ t,11 t,1 ; : out __ ~out
Hence, denoting M = " and /" = and imposing /5 = 7415,

0
that (M) | FX ~ N (M ~out), where M and °“* are the unique solutions to
t

1 0 vo
AMP™ = ay(t, X) M + = gt |7 ) | {dXt — (vas M+ 61, MEst )t}
Ox Va3t 01t
(S.75)
;yout — al(t X)’}/OUt +/YOUtCL* ‘l‘ O O (876)
g

1 0 0 ’
- — + ,Ytout Vast + ,ytout bt
Ox Vgt 01t VgVt 1

7 0
0 0/
Recall that v, and y satisfy 41, = —a3,722 and x; = v, 2 (1—x¢) — Ve(vas +01:x:)? 0%

with initial conditions Mg** = ('u) and §" = <
0

with initial conditions 719 = 7° and xo = 0. It is straightforward to verify that v =

Yt Xt YtXt
1—xt 1—xt

7t is positive semidefinite as its leading principal minors are positive multiples of 1 and

x—x2>0.

v xe
<1Xt 1’“) satisfies the v*“'-ODE above along with given initial condition. Moreover,

Next, substitute given the solution ?* into (S.75) and subtract the equation for the
second component from its first to obtain the following SDE for M := M — Mg“: dM,; =
—YM;a3,y; with initial condition M, = 0. Now if M; > 0, then dM; < 0, giving us a
contradiction; likewise for the case M; < 0. It follows that M, = 0, and thus My* = My,
for all t > 0. Substituting this back into (S.75), we have

Ye(vas: + S1ixe)

thoﬁt = (ng)ut - (VOégt + 51t>Mt?11Ltdt)

0% (1= xt)
vag + 0
— ’Yt(agc(si - Xl:)Xt) [dX, — (vaor + Oor + MY (vasy + 1) + Li(vogy + 020))dt]. (S.77)

On the other hand, we have

Li[fon + Roy + Rg]dt + houdt + Bd X,

st:
L—xt
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_ Ye(vase + O1exe)

02 (1 X ) [dXt — (50t + VO + Lt[V(OZQt + Ofgt) + 5175 + 52t])dt] . (878)

X=Xt

Hence L; := MW — L; satisfies dL; = _%Et(yagt + 61;) with initial condition
) O'X t

Lo = — p=0. We conclude that L, = 0, and thus L, = MY = Mgt for all t > 0. O

Lemma S.9 (Sender’s controlled dynamics). Suppose that the receiver follows (9) and be-
lieves that (8) and (10) hold. Then, if the sender follows (a})icio11,

V2 1 VoY + )
dM, = Yoz (—2 - —2) (a) — [0 + s Ly + g M))dt + L2 T XN 57, (8.79)
0Ox Oy 0x
voase + 0
dL, = %<0_2 E’i X“>Xt> {[v(a} — [ovor + (vgr + age) Ly]) + 600(My — L)) dt + oxdZ;}, (S.80)
X - Xt

where Z, = i[Xt — fg(z/a; + 8os + 015 M+ 25 L) ds| is a Brownian motion from the sender’s
perspective. Also, Ei[(M; — Mt)Q] = Yxe for any such (ay)ico,r)-

Proof. Equation (S.79) follows from using (S.58) in (S.59), and (S.80) follows from (S.55)
using (S.72)-(S.74) and that dX; = (va; + 0o + do¢ Ly + 61.My)dt + oxdZ; from the sender’s

perspective. N

Lemma S.10 (Learning ODEs). Suppose that (B1, 53,91) are differentiable. Then, there is
a unique solution to (S.53)—(S.54), and this solution satisfies 0 < v < 4% and 0 < y; < 1
for allt € [0,T], with strict inequalities over (0,T] if B39 # 0. The same conclusions hold if
Ot = Uag + Ugauze. Moreover, in both cases, x; < 1 —~y/~° for all t € [0,T].

Proof. The same arguments from the baseline proof go through, so we focus on proving the
tighter inequality x; < 1 — v/7°.

We now use the comparison theorem. Let fX(t, x:) denote the right hand side of (S.54).
Note that z; = 1 — 7, /~° solves the ODE

Z = fz(t, Zt) = 'Yt(ﬁltXt + 537:)22(1 - Zt) (8-81)

with zg = 0. Thus xo = zo. Further, note that f*(¢, z) > fX(¢, z), and hence
0=x¢— fXt,xe) =2 — [2(t,2) < 2 — fX(t 20). (S.82)

By the comparison theorem, y; < z; for all ¢ € [0, T, as desired. The same argument applies
when 01, = Ugg + Ugarge in (S.54). O

The following result generalizes the one-to-one mapping between + and x in Proposition

9 to the case where the sender’s action enters the public signal, as in (S.51).
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Proposition S.3 (One-to-one mapping). Suppose that signals have the form (S.51)-(S.52),
and suppose that sy = 0. Then x; = %W for some positive scalars ¢, cy and d.

Thus, xi € [0, ca) when v € (0,7°].

Proof. We first derive a candidate mapping for the general case of a drift a, + va;, v € [0, 1],
in X. Suppose §; = Uz53. The x-ODE for v € [0, 1] boils down to

A V2 1 (7/ + ﬁ'adxt)2
Xt = %ozé <[g + E} (1= xt) — T) =: _%ath(Xt)'
If f:]0,%) — [0,7°], some x € (0,1], is differentiable and f(x:) = ~ for all ¢ > 0, then
f'(xe)xt = %. When ag; # 0 o) — _2 Hence, we solve the ODE % = = for

» flxt) Q(xt) () Q(x)
X € (0,x) where f(0) =~°.

. A0 +4(140)2 [ox oy ]2 —b —/b2+4(15)? /[ox oy |2 b
To this end, let ¢y := (s Tox )2 S Jox )2

[V?/0% + 1/0%] + 20144/ 0%, be the Toots of the convex quadratic ) above. Note that these

, where b :=

and —cy :=

are well-defined since 149 and Assumption 1 part (ii) imply that @4, # 0.

EDY
Clearly, —c; < 0 < ¢3. Also, co < 1asQ(1) > 0. Thus, Q(EX) = _(aaa)2)({c1+62) [xiu N x—lcz]
is well defined (and negative) over [0, c2) with 1/(x +¢1) > 0 and —1/(x — ¢2) > 0 over the
same domain. We can then set Yy = ¢y and solve OX J;/((Ss)) ds = —(aaa;‘%{j o) log (f;r_c;(i_?)’

1/d 1/d
which yields the decreasing function f(x) = f(0) <C—1> (CQ_X> , where

() x+c1
1/d == 0%/ [(tiea)*(c1 + ¢2)] > 0.

Imposing f(0) = 7° and inverting yields x(v) = f~!(y) as given in the lemma. Note that
X(7°) = 0 and x(0) = c¢o. Since y is decreasing, we have y; € [0,¢2) when v, € (0,7°].
Finally, routine calculations akin to those in the proof of Proposition 9 confirm that this
function satisfies the y-ODE for v # 0. m

S.4.2 Trading Game (Section 4.3): Existence Result

The following result adapts Theorem 1 to our trading game.

Proposition S.4. There exists a scalar C > 0 independent of v° such that if T < C/~°,
there exists an LME.

Proof of Proposition S.4. The proof has the same structure as that for Theorem 1. Below we
describe the main variations—we refer the reader to that central proof for all the details. We
characterize a LME in which the sender trades according to a; = 53:(0 — L) + B1:(M; — Ly)
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and the sender’s value function has the form
V(0,m, 0, t) = vor + var (0 — £)* + vp (0 — m)® + ver(m — )%, (S.83)

where (vg,va,vp,vc) are C! functions of time. Clearly, the receiver’s strategy must be
a; = 51t(Mt — L), where 1, := 1 for all t € [0, T]. The laws of motion for M, M, and L are
given by (S.56), (S.79), and (S.80), respectively.

By imposing the first order condition on the right hand side of the HJB equation and
matching coefficients, we obtain identities allowing us to solve for (vgp,vc) in terms of
(7, X, B, B3, v4)-

Using these identities (and their derivatives) in the first order condition, we obtain a core
subsystem of ODEs in (v, x, 81, 83,v4). We use a change of variables 74 = va7y. Since the
myopic coefficients (577, 55) = (0, 1) are constant over time, there is no need to work with

centered coefficients. Going forward in time, the ODEs for (f, 83, 74) have the form

. Yiha (Bat, Bat, Vat, Xt)
Ty = . ~ Y € 6 /8 7/6 Y
t %05 (1 = X4)%1 (But, Bat, Dar, Xt) {5 s
. {~ o1 (Bue, Bat, Xt)
Var = Tt | VAt

%oy (1 = x1)

+ hy 2 (Bt Bse, Xt)} )

where hy, j, hy1, hy o are polynomials for # € {fy, #3}. The full expressions for these ODEs
can be found in the Mathematica file spm.nb on our websites.
Of particular interest for our bounding exercise is the denominator term j, which involves

more terms than in the baseline model and reads

J(Be, Bst, Vat, xt) = 031(04315 — xtaﬁast(ai + 012/[1 + xt) + 204)]

) R ) (S.84)
+ oy Xe[xt(20ar + o (1 = Bu[l — x¢])) — o%],
where ag; = Brxt + B3 The terminal conditions are (Bir, B3, 0ar) = (0,1,0).
Also going forward the ODEs for (v, x) are
Yt = = (Bst + Buxt)’D (S.85)
Xe = (B3t + Buxa) (1 — x¢) — % W[Bst + Brexe] + d1exe)* /0% (S.86)

where v = 1 and d;; = 1, subject to (70, x0) = (7°,0).
These ODEs and initial /terminal conditions define a BVP in z := (7, x, 51, 83, Ua) that

we write as z, = F(z;).

Proposition S.5. There exists C' > 0 independent of v° such that there exists a solution to
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the BVP whenever T' < C/~°.

Proof. We follow the steps of the original proof, modifying them as needed.

Step 1: Define the domain for our fixved point equation. Given K € (0, 1), we define I'(K)
as the space of uniformly Lipschitz continuous functions ~ : [0,7] — [0,~°] with uniform
Lipschitz constant (7°)*(2K + 1)?/o%. For fixed K € (0,1) and fixed y € (0,1) we define
X (K, x) as the space of Lipschitz continuous functions y : [0,7] — [0, x] with uniform
Lipschitz constant 7° [(2K + 1)?X + (2K 4 2)*/c%].

We desire to choose K and X(K) so that the RHS of the ODEs for §; and (3 are well-
defined for (B1, 83,04, X) € B(K) x [0,X(K)], where B(K) := [-K,K] x [l — K,1+ K] x
[— K, KJ; in particular, we choose Y to ensure that the polynomial j in the denominator
of By, and By is bounded away from zero. Recalling (S.84), it is easy to see that for any
K € (0,1), there exists X(K) € (0,1) such that j is positive and bounded away from zero
over the domain B(K) x [0, X(K)]. Of course, since on this domain y; < X(K) < 1, the term
(1 — x¢) on the right hand sides of (Blt, By, 0 At) is positive and bounded away from zero.

In some abuse of notation, define X (K) = X (K, x(K)) and A(K) :=T'(K) x X(K).
Step 2: Given A = (v,x) € A(K), define a backward initial value problem (IVP) for
(B1, B3,04), and establish sufficient conditions for this IVP to have a unique solution. Recall
that the hat notation reverses time. We define the backward IVP

b, = £ (by,t) s.t. by = (0,1,0). (IVPP™4 (X))

We argue that there exists a positive threshold TPV4(y°; K) € Q(1/+°) such that for all
A € A(K), a unique solution b(-; A) to (IVPPY4())) exists over [0, 7] and satisfies b € B(K).
By standard results, a local solution exists, and solutions are unique given existence. Now

if over some interval of existence we have b, € B(K) for ¢ € {1, 2,3}, then we also have

|bit — byo| <

t t
/ bitdt' < [ m()dt = o), (5.87)
0 0

where h;(K) is a positive scalar that bounds the magnitude of the right hand side the
associated ODE using b; € B(K) and x; € [0, X(X)], where the latter holds by the definition
of our domain A(K). Now for all K € (0,1), define T""4(7%; K) = mine(y 23 th(K) > 0.
Clearly, TP%4(7°; K) € Q(1/7°). By an analogous argument to the one in the baseline proof,
this construction implies that for all T < TP¥4(4%; K) and A € A(K), (IVP"(})) has a

unique solution over [0, T satisfying b, € B(K) for all ¢ € [0,T]. We denote this solution by
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b(-; A), and we define the functional

~

g(\) == (b1(5\), ba(5; )

mapping A to forward-oriented solutions for 8; and f3, to be used in the forward-evolving
learning ODEs (S.85)-(S.86).

Step 3: The operator X\ — q(\) is continuous and ||g(\) — (0,1)||cc < K for all X\ € A(K).
Continuity follows from Lemma C.3 and the bound follows from Step 2.

Step 4: Construct a continuous self-map on A(K) using the IVP for the learning ODEs.
As before, for all A € A(K), we define an IVP for A = (A1, Ag),

A=V, 1) st A= (7°,0), (IVP™(g(N)))

consisting of the two forward learning ODEs (S.85)-(S.86), where (¢1()), g2(A\)) play the role
of (81, Bs)-

There is a unique solution A(g()\)) over [0,T] to (IVP™(g()\))) by Lemma S.10 and
it satisfies Ay € [0,7°] x [0,1] for all time. The arguments that this solution satisfies the
Lipschitz bounds defining A(K) are the same as before.

However, there is one extra step to ensure that A(g(A\)) € A(K): we must verify that
A2 € [0,X(K)]. To that end, note that the solution (v, x) to the system (S.85)-(S.86) with
initial conditions (7o, xo0) = (7°,0) satisfies x; < 1 — 7/~ for all ¢ € [0,7] by Lemma S.10,
50 A2(q(N)) <1 —A1(¢(N))/+°. In turn, given a bound |Bs; + Siex:| < A, it is easy to show
that 70 > rdaer. As [ V)], (0] < K and X € [0,1], we have [go(3) +a1(M)Ao(g(N)] <

o

2K + 1, so letting 2K + 1 play the role of A, we have A;(q(\)) > m Combining
these inequalities,
1 _ Ty(2K + 1)2%

A2(q(N) <1 —=X(g(N)/7° <1 -

Ty (2K + 125 4+1 Ty (2K +1)28 +1° (5:88)
There exists a threshold T4 (7°; K) € Q(1/7°) such that T < T™4(~%; K) implies the last
upper bound in (S.88) is less than Y(K).

Thus, if we define T(7°; K) = min{T™(7°; K), T*"4(v*; K)}, T < T(y°; K) implies
that g(A) := A(g())) is a self-map on A(K), and it is continuous by the same reasoning as
before. We conclude by optimizing over K € (0,1), defining 7'(7°) := maxge(01)7(v% K)
and finally C' := T'(7°)y°.° O

®Note that as K 11, Y(K) 1 0, so T™4(y°; K) | 0. And as K | 0, T*"4(4°; K) | 0. Hence, T(7°; K) is
maximized at interior K.
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Having proven Proposition S.5, it is straightforward to recover the value function coef-
ficients (vp,ve) from the identities used earlier, and the ODE for vy has a unique solution

since it is linear as usual, concluding the proof. O

S.4.3 Trading Game (Section 4.3): Proof of Proposition 7

Proof of Proposition 7. To prove that By, = 0, 14 + B + B3¢ = 0 in any LME, we follow
similar steps to those used in the proof of Proposition 2. Using the general form of the con-
jectured value function in Section 5 and deriving the ODEs from the sender’s best response
problem (see spm.nb), it is easy to verify that (5y,v3) = (0,0) jointly solve their respective
ODEs and the terminal conditions (Byr,vsr) = 0 in any LME. By the Picard-Lindel6f theo-
rem, these are the unique solutions. Next, we show that S; := S1; + oy + B3¢ = 0 for all ¢.

From the terminal conditions Sir = 0, Bor = —1, and B37 = 1, we have Sp = 0.

Define the following candidate solution for vg:
pond — o[-0k + ok Bue(l — xi)* + xal0% + 2v0670)] (S.89)
(0% + 0% )azn(l — xe)

n agi[o% 0 (1 — x1) + 2067 (—0%[1 — x4] + 05x1)]

, S5.90
(0% + oDl - ) (590
which satisfies 1534 = 0 = vgp. Define v§; = v — vg;, which has terminal value vg, = 0.

We can construct a pair of ODEs for S; and v5 by differentiating each and using By =
Sy — (81t + Bat) to eliminate By and vy = vg‘t — vgg"d to eliminate vg; in each.

Routine calculation then shows that (S, v5) = (0,0) solve the ODEs for S; and v5 and
their terminal conditions. By Picard-Lindelof, this is the unique solution, so in particular,
Bri+Bar+Bs¢ = 0 in any solution. Hence a; = B1y M+ Bor Ly + 3,0 = B3¢ (0 — Ly )+ B1y(My—Ly).
Since asr = Birxr+F3r = 1 > 0, and the right hand side of the ODE for a3 contains a factor
of as, a standard comparison theorem argument establishes that ag, > 0 for all ¢ € [0, T].

On the path of play, using the representation M; = x:0 + (1 — x¢)L¢, we have a; =
B3¢(0— L)+ B4 (My— Ly) = B3(0— Ly)+ Bre([x:0+ (1= x¢) Li] — Li) = a3 (0 — Ly). Substituting
the equilibrium strategies into (S.80) yields dL; = AydX;, where Ay = %XLJJ”“) ]

Ox

S.4.4 Trading Game (Section 4.3): Footnotes 31 and 33

Proofs for Footnote 31 We now show that 8, > 0, 83 € (0,1), and [y < 0; while
% > 0, dgft > 0, and % < 0. We begin with some preliminary observations. Fix any
K € (0,1) and note that the right hand sides of the ODEs for (v, x, 51, 83, 74) are of class

C' in these variables on [0,7°] x [0,¥(K)] x B(K), where X(K) and B(K) were defined in
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the proof of Proposition S.5. Further, note that the proof of Proposition S.5 shows that
for any K € (0,1), there exists T'(7%; K) such that for all T < T'(y°; K), a solution to the
BVP exists, and in turn a LME exists, for which y; < X(K) and (Bi, Bst,04¢) € B(K) for
all t € [0,7]. (And recall v € (0,7°] and x; > 0 from Lemma S.10.) Finally, recall that
T(v°; K) — 0 as K — 0, and thus Y — 0 uniformly by the upper bound (S.88). Hence, as
K — 0, we have y — 0, 1 — 0, 83 — 1, and « — 1 uniformly, and in particular, #3 > 0.
Evaluating the right hand sides of (Blt,ﬁgt,dgt) at (x¢, B, Bae, age) = (0,0,1,1) yields
(—O‘“(l}%)% ode O‘Eg). Further, for all sufficiently small K, all T < T(7% K), and

b )
Ix Ix

t € 10,7), "‘Eg” is positive and bounded away from zero. Hence, for sufficiently small K
and any T < XT(fy"; K), we have that f3 and a3 are strictly increasing.

We now show that £; < 0; given that its terminal value is zero, this implies 8; > 0, and
given (3 > 0, this in turn implies Sy < 0. Since By converges to 0 uniformly, to sign B,
we examine the second derivative, 3;. It is easy to show that for small K, 8;; = 0 implies
B — a3 2ok | < e(K), where e(K) — 0 as K — 0. Since a3,72/c is strictly positive and
bounded away from zero, this shows that for sufficiently small K, 8, = 0 implies 3, > 0.
Further, it is easy to check that in any LME (with no constraints on time horizon) Bir = 0.

Hence, Blt can only cross zero from below: we have Blt < O0forallte|0,T).

Proof or Footnote 33 The following proposition formalizes the claim made in footnote

33. We use superscript leak to denote oy € (0,+00) and no leak to denote oy = +00

Proposition S.6. Fiz oy € (0,+00), and suppose that a LME exists over [0,T]. For any

such LME, there exists a nonzero measure of times t for which Ay > AP ¥,

Proof. First, note that azp = 1 for all oy € (0, +00)U{+00}, while x4 > 0 and y}° ‘e = 0.
Thus otk + ok > qe leak 4 ynoleak We prove the result in each of two cases.
Case (i): v ' > Xm0 1ok Since aleak 4 yleak > qpuo leak L yno leak e have Aok > \no leak

unambiguously. By continuity, A% > AP for all ¢ in a neighborhood of T

N Xleak _ _X,no leak : o o X,leak __ _X,no leak
Case (ii): 3" < 477" *“*". Here, since the initial values coincide, 7, " = ~5 ™ " =
. X,leak _ : X,no leak : . .
7%, we must have 4; """ < 4; " " for a nonzero measure of times. It is easy to verify that
4 = —0% A2, so it follows that Ale® > Are lek for a nonzero measure of times. O

Figure 1 below compares equilibrium strategies, signaling coefficients, and price impact
for a myopic receiver, as in our baseline model, and a forward-looking receiver with discount
rate 7 = 0 (like the sender). The plots illustrate that the qualitative properties of our
equilibrium are preserved (except for the obvious change in the receiver’s signaling coefficient
d1). Relative to a patient receiver, a myopic receiver trades more aggressively (Figure 1c),

as he ignores the price impact of his own trades. Because of this, the sender’s trades have
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more price impact, so the sender trades less aggressively on her private information 6 if the
receiver is myopic: (3 falls as in Figure 1b. However, Figure la shows that £, moves in the
opposite direction: if the sender has traded more in the past, the expects stronger upward
drift in the price in the presence of a myopic receiver, and to arbitrage this, she trades more
aggressively on the second-order private information. Figure 1d shows the effect on the total
signaling coefficient is small since §; and d; move in the opposite direction that f3 moves.
Finally, Figure le shows that with a myopic receiver, price impact is: initially lower (due to
the sender’s lower (33); then rises more quickly (due to the receiver’s contribution to the total
signaling coefficient); and finally, it falls faster as 7" approaches due to the market maker’s
learning, because a myopic receiver does not speed up his trades enough by the end. Here,

“single agent” refers to the case where there is no receiver, only the sender and market maker.
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Figure 1: Trading game: (7°,r,0x) = (1,0,1) and oy = 0.5 unless otherwise specified.

40



	Monetary Policy Game (Section 4.1): Proofs of Propositions 3 and 4
	Proof of Proposition 3 part (i)
	Proof of Proposition S.1: X=0 Case
	Proof of Proposition S.1: X=+ Case
	Proof of Proposition S.1: Comparison of Signaling Coefficients
	Proof of Proposition 3 part (ii)
	Commitment Solution to Static Benchmark

	Reputation Game (Section 4.2): Omitted Proofs
	Proof of Proposition 5
	Proof of Proposition 6

	Existence of Linear Markov Equilibria (Section 5): Omitted Proofs
	Auxiliary Results
	Terminal Conditions (=0)
	Proof of Corollary C.2
	Proof of Proposition 1: (0,v3) System

	Extension: Both Players Affect X and Y
	Technical Results
	Trading Game (Section 4.3): Existence Result
	Trading Game (Section 4.3): Proof of Proposition 7
	Trading Game (Section 4.3): Footnotes 31 and 33


